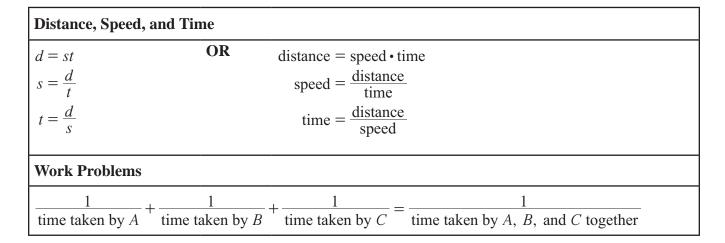
Mathematics 20-1 Formula Sheet

Sequences and Series

Arithmetic Sequence	Geometric Sequence
$t_n = t_1 + (n-1)d$	$t_n = t_1 r^{n-1}$
Arithmetic Series	Geometric Series
$S_{n} = \frac{n(t_{1} + t_{n})}{2}$ $S_{n} = \frac{n}{2} [2t_{1} + (n-1)d]$	$S_n = \frac{t_1(r^n - 1)}{r - 1}$ $S_n = \frac{rt_n - t_1}{r - 1}$
	Convergent Geometric Series
	$S_{\infty} = \frac{t_1}{1 - r}$


Quadratic Functions and Equations

Vertex Form	Quadratic Formula
$f(x) = a(x-p)^2 + q$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Standard Form	Discriminant
$f(x) = ax^2 + bx + c$	$b^2 - 4ac$

Trigonometry

Primary Trigonometric Ratios	Cosine Law
$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$	$a^2 = b^2 + c^2 - 2bc\cos A$
7.1	$a^{2} = b^{2} + c^{2} - 2bc \cos A$ $b^{2} = a^{2} + c^{2} - 2ac \cos B$ $c^{2} = a^{2} + b^{2} - 2ab \cos C$
$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$	$c^2 = a^2 + b^2 - 2ab\cos C$
$\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$	$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$
Pythagorean Theorem	$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$
$a^2 + b^2 = c^2$	$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$
$(\log_1)^2 + (\log_2)^2 = (\text{hypotenuse})^2$	Sine Law
	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
	$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$

Rational Expressions and Equations

