Unit 1: Radicals Equipment Room

Unit 1: Radicals Lesson 1.3

Coach's Corner - VI

1. Solve $\sqrt{21x+51}+7=19$. State any restrictions on the variable and verify the solution.

$$21x + 51 \ge 0$$

$$21x + 51 - 51 \ge 0 - 51$$

$$\frac{21}{21}x \ge \frac{-51}{21}$$

$$x \ge \frac{-51}{21}, x \in \mathbb{R}$$

$$\sqrt{21x + 51} + 7 = 19$$

$$\sqrt{21x + 51} + 7 - 7 = 19 - 7$$

$$\sqrt{21x + 51} = 12$$

$$(\sqrt{21x + 51})^2 = (12)^2$$

$$21x + 51 = 144$$

$$21x + 51 - 51 = 144 - 51$$

$$21x = 93$$

$$\frac{21}{21}x = \frac{93}{21}$$

$$x = \frac{31}{7}$$

$$\sqrt{21x + 51} + 7 = 19$$

$$= \sqrt{21(\frac{31}{7}) + 51} + 7 = 19$$

$$= \sqrt{93 + 51} + 7$$

$$= 12 + 7$$

$$= 19 = 19$$
Left side = Right side

ADLC Mathematics 20-2

Equipment Room Unit 1: Radicals

2. Rearrange the formula for the volume of a sphere to solve for the radius r. Volume of a sphere $=\frac{4}{3}\pi r^3$

$$V = \frac{4}{3}\pi r^3$$

$$\frac{3}{4}V = \frac{4}{3}\pi r^3 \times \frac{3}{4}$$

$$\frac{3}{4}V = \pi r^3$$

$$\frac{3}{4}V \div \pi = \frac{\pi}{\pi}r^3$$

$$\frac{3}{4\pi}V = r^3$$

$$\sqrt[3]{\frac{3}{4\pi}V} = \sqrt[3]{r^3}$$

$$\sqrt[3]{\frac{3}{4\pi}V} = r$$

3. Given the volume of 105 inches³ for an 8 pound bowling ball. Find the radius of the bowling ball to the nearest hundredth of an inch.

$$\sqrt[3]{\frac{3}{4\pi}V} = r$$

$$\sqrt[3]{\frac{3}{4\pi}(105)} = r$$

$$\sqrt[3]{\frac{315}{4\pi}} = r$$
2.93 inches $\stackrel{.}{=} r$

The bowling ball has a radius of approximately 2.93 inches.

Please complete Lesson 1.3 Game On!, Unit 1 Time Out!, Final Review Assignment, and Check Point located in Workbook 1B.

86 ADLC Mathematics 20-2