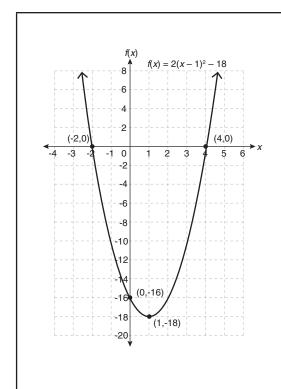
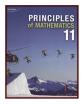


Please refer to Pages 356 and 357, Examples 1 and 2, of *Principles of Mathematics 11* for more examples of graphing quadratic functions given in vertex form.

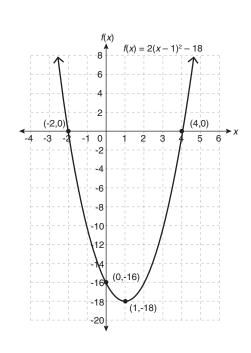

Practice Run

Refer to page 362 of Principles of Mathematics 11.
List four important characteristics of quadratic functions written in vertex form, $y = a(x - h)^2 + k$.

ADLC Mathematics 20-2


2. Using the equation of the function $f(x) = 2(x-1)^2 - 18$, explain how the following information could be determined. Use the graph to verify your responses.

- the coordinates of the vertex
- the *y*-intercept
- the equation of the axis of symmetry
- the maximum or minimum *y*-value
- the domain and range


Compare your answers.

1. Refer to page 362 of *Principles of Mathematics 11*.

List four important characteristics of quadratic functions written in vertex form, $y = a(x - h)^2 + k$.

- (h, k) represents the vertex of the function.
- The equation of the axis of symmetry is x = h.
- When the function opens up, there is a minimum value of k.
- When the function opens down, there is a maximum value of k.
- 2. Using the equation of the function $f(x) = 2(x-1)^2 18$, explain how the following information could be determined. Use the graph to verify your responses.

• the coordinates of the vertex

The equation is in the form $f(x) = a(x-h)^2 + k$, where (h, k) is the vertex.

The vertex is (1, -18).

• the *y*-intercept

Let
$$x = 0$$
.

$$f(x) = 2(x-1)^2 - 18$$

$$f(0) = 2(0-1)^2 - 18$$

$$f(0) = 2(-1)^2 - 18$$

$$f(0) = -16$$

• the equation of the axis of symmetry x = h

$$x = 1$$

- the maximum or minimum y-value because a is positive, there is a minimum at y = -18
- the domain and range

Domain: $\{x \mid x \in \mathbb{R}\}$

Range: $\{y \mid y \ge -18, y \in R\}$