When proportions are written as fractions, their cross products are equal.

$$\frac{5}{10} = \frac{1}{2} \longrightarrow \frac{5}{10} \longrightarrow \frac{1}{2}$$

$$5 \cdot 2 = 10 \cdot 1 \longrightarrow 10 = 10$$

Finding the cross products of a suspected proportion can be used as a verification method.

Practice Run

1. Fill in the blanks for the time equivalencies.

a. 1 minute = _____ seconds

b. 1 hour = _____ minutes

c. 1 day = _____ hours

d. 1 hour = _____ seconds

e. 1 day = _____ seconds

f. 24 hours = _____ minutes

g. 2 hours = _____ seconds

h. 5 days = hours

i. 2 days = _____ minutes

2. Solve for the missing variable. Show all steps and round your answers to the nearest hundredth.

a.
$$\frac{10.75}{x} = \frac{2}{5}$$

b.
$$\frac{36}{22} = \frac{x}{29}$$

Compare your answers.

- 1. Fill in the blanks for the time equivalencies.
 - a. 1 minute = 60 seconds
 - b. 1 hour = 60 minutes
 - c. 1 day = 24 hours
 - d. 1 hour = $60 \times 60 = 3600$ seconds
 - e. $1 \text{ day} = 24 \times 60 \times 60 = 86400 \text{ seconds}$
 - f. 24 hours = $24 \times 60 = 1440$ minutes
 - g. 2 hours = $2 \times 60 \times 60 = 7200$ seconds
 - h. $5 \text{ days} = 5 \times 24 = 120 \text{ hours}$
 - i. $2 \text{ days} = 2 \times 24 \times 60 = 2880 \text{ minutes}$
- 2. Solve for the missing variable. Show all steps and round your answers to the nearest hundredth.

a.
$$\frac{10.75}{x} = \frac{2}{5}$$

$$\frac{10.75}{x} = \frac{2}{5}$$

$$10.75 \cdot 5 = 2x$$

$$\frac{53.75}{2} = \frac{2}{2}x$$

$$26.875 = x$$

$$26.88 = x$$

b.
$$\frac{36}{22} = \frac{x}{29}$$

$$\frac{36}{22} = \frac{x}{29}$$

$$36 \cdot 29 = 22x$$

$$\frac{1044}{22} = \frac{22}{22}x$$

$$47.\overline{45} = x$$

$$47.45 = x$$