

Practice Run

Time (h)

1. a. Using the graph above, calculate the average speed of the moped.

- b. Convert the moped's average speed to
 - metres per minute (1 kilometre = 1000 metres)
 - miles per hour (1 mile = 1.6 kilometres)

- 2. Graphs representing the fuel consumption of two different motorcycles are provided.
 - a. Determine the average fuel consumption of each motorcycle.
 - b. Which motorcycle uses less fuel? Explain.

Motorcycle #2 Fuel Consumption

Compare your answers.

1. a. Using the graph above, calculate the average speed of the moped.

$$s = \frac{10 \text{ km} - 0 \text{ km}}{2 \text{ h} - 0 \text{ h}}$$

$$s = \frac{10 \text{ km}}{2 \text{ h}}$$

$$s = 5 \text{ km/h}$$

- b. Convert the moped's average speed to
 - metres per minute (1 kilometre = 1000 metres)
 - miles per hour (1 mile = 1.6 kilometres)

In metres per minute:

Let x = distance in metres

$$\frac{5 \text{ km}}{x} = \frac{1 \text{ km}}{1000 \text{ m}}$$

$$5 \text{ km} \cdot 1000 \text{ m} = 1 \text{ km} \cdot x$$

$$5000 \text{ m} = x$$

5000 metres per hour

In miles per hour:

Let x = distance in miles

$$\frac{5 \text{ km}}{x} = \frac{1.6 \text{ km}}{1 \text{ mi}}$$

$$5 \text{ km} \cdot 1 \text{ mi} = 1.6 \text{ km} \cdot x$$

$$\frac{5 \text{ km} \cdot 1 \text{ mi}}{1.6 \text{ km}} = \frac{1.6 \text{ km} \cdot x}{1.6 \text{ km}}$$

$$3.125 \text{ mi} = x$$

3.125 miles per hour

Convert hours to minutes.

1 hour = 60 minutes

$$\frac{5000 \text{ m}}{60 \text{ min}} = \frac{x}{1 \text{ min}}$$

$$5000 \text{ m} \cdot 1 \text{ min} = 60 \text{ min} \cdot x$$

$$\frac{5000 \text{ m} \cdot 1 \text{ min}}{60 \text{ min}} = \frac{60 \text{ min} \cdot x}{60 \text{ min}}$$

$$83.333...m = x$$

83.3 metres per minute

- 2. Graphs representing the fuel consumption of two different motorcycles are provided.
 - a. Determine the average fuel consumption of each motorcycle.
 - b. Which motorcycle uses less fuel? Explain.

Motorcycle #2 Fuel Consumption

Fuel consumption for #1.	Fuel consumption for #2.
$m = \frac{\text{change in distance}}{\text{change in gallons}}$	$m = \frac{\text{change in distance}}{\text{change in gallons}}$
$m = \frac{d_2 - d_1}{g_2 - g_1}$	$m = \frac{d_2 - d_1}{g_2 - g_1}$
$m = \frac{85 \text{ mi} - 65 \text{ mi}}{4 \text{ gal} - 3 \text{ gal}}$	$m = \frac{110 \text{ mi} - 85 \text{ mi}}{5 \text{ gal} - 4 \text{ gal}}$
$m = \frac{20 \text{ mi}}{1 \text{ gal}} = 20 \text{ mi/gal}$	$m = \frac{25 \text{ mi}}{1 \text{ gal}} = 25 \text{ mi/gal}$
Rate of consumption is 20 mi/gal. For every 20 miles travelled one gallon used.	Rate of consumption is 25 mi/gal. For every 25 miles travelled one gallon used.

Motorcycle #2 uses less fuel because it travels farther using the same amount of fuel.

Understanding rates allows you to make sense of how fast one quantity changes in relation to another. *Lesson 5.2* introduces the application of rates and proportions when working with scale factors and scale diagrams.