

Unit 5: Proportional Reasoning Lesson 5.1

Coach's Corner - II

1. How much washer fluid, to the nearest litre, could be purchased for \$20.00, if 40L of washer fluid is \$45.99?

Let x = number of litres for \$20.

$$\frac{x}{\$20} = \frac{40 \text{ L}}{\$45.99}$$
$$x = \frac{\$20 \times 40 \text{ L}}{\$45.99}$$
$$x \doteq 17.395 \text{ Litres}$$

Approximately 17 litres can be purchased for \$20.00.

2. Two local Alberta meat shops are competing for the best price on a particular cut of meat. Tip sirloin roast sells in a 6 kg package for \$121.74 at the Meats Plus store. The same cut of meat at AAA Meats Shop sells a 1 kg package for \$19.95. Which shops offers the better deal?

$$\frac{\$121.74}{6 \text{ kg}} = \$20.29 / \text{kg}$$

For 1 kg of sirloin tip, the cost is \$20.29 at Meats Plus and \$19.95 at AAA Meats. AAA Meats offers the better deal.

3. In a particular NHL season, the Edmonton Oilers won 9 games out of their first 15 games played. If this record continued for the rest of the season, how many games would they have won in an 82-game season?

Let x = number of games won in the season.

$$\frac{x}{82 \text{ games}} = \frac{9 \text{ wins}}{15 \text{ games}}$$
$$x = \frac{82 \text{ games} \cdot 9 \text{ wins}}{15 \text{ games}}$$
$$x = 49.2 \text{ wins}$$

Of the 82 games played, 49 games would have been won by the Oilers.

72 ADLC Mathematics 20-2

In 2005, the oil sands produced 32 Megatonnes (Mt) of green-house gas (GHG) emissions starting. By 2010, 48 Mt of GHG emissions were produced. Calculate the average rate of increase in GHG emissions between those years.

Let m = average rate of change (slope); e = GHG emissions in Mt; t = time in years

$$m = \frac{\text{change in emissions}}{\text{change in time}}$$

$$m = \frac{e_2 - e_1}{t_2 - t_1}$$

$$m = \frac{48 - 32}{2010 - 2005}$$

$$m = \frac{16}{5}$$

$$m = 3.2$$

The average rate of increase was 3.2 Mt/year.

Use the following information about the Great White North Triathlon to answer the following questions. Show all work.

The Great White North Triathlon in Stony Plain, Alberta consists of a 2.0 km swim, a 90.0 km bicycle ride, and a 21.0 km run (half-marathon). The race must be completed in 8 hours. The swim cut-off time is 1.5 hour, the bike cut-off time is 4.5 hours, and the running cut-off time is 2.0 hours.

Useful conversions and formulas:

- 1 mile = 1.6 km
- speed = $\frac{\text{distance}}{\text{time}}$ time = $\frac{\text{distance}}{\text{crosd}}$
- a. Determine the average rate of speed required for each of the three events to stay within the mandatory cut-off times.

Swim	Cycle	Run
1		$\frac{21 \text{ km in } 2.0 \text{ hours}}{2.0 \text{ h}} = 10.5 \text{ km/h}$

73 **ADLC Mathematics 20-2**

b. Convert each speed to miles per hour.

The unit measure for time is already per hour, so no conversion is needed for time. Convert the distance from kilometres to miles.

Swim	Cycle	Run
$x \text{ miles} = 1.\overline{3} \text{ km}$	x miles = 20.0 km	x miles = 10.5 km
1 mi = 1.6 km	1 mi = 1.6 km	1 mi = 1.6 km
$\frac{x}{1.\overline{3} \text{ km}} = \frac{1 \text{ mi}}{1.6 \text{ km}}$	$\frac{x}{20.0 \text{ km}} = \frac{1 \text{ mi}}{1.6 \text{ km}}$	$\frac{x}{10.5 \text{ km}} = \frac{1 \text{ mi}}{1.6 \text{ km}}$
$x = \frac{1 \text{ mi} \cdot 1.\overline{3} \text{km}}{1.6 \text{ km}}$	$x = \frac{1 \text{ mi} \cdot 20.0 \text{ km}}{1.6 \text{ km}}$	$x = \frac{1 \text{ mi} \cdot 10.5 \text{ km}}{1.6 \text{ km}}$
$x = 0.8\overline{3} \text{ mi}$	x = 12.5 mi	x = 6.5625 mi
$0.8\overline{3}$ mi/h	12.5 mi/h	6.56 mi/h

c. One racer had the following speeds:

1.2 mi/h for the swim, 16.5 mi/h for the cycle, and 5.0 mi/h for the run. How fast did the racer complete the race?

Swim	Cycle	Run
x miles = 2.0 km	x miles = 90.0 km	x miles = 21.0 km
1 mi = 1.6 km	1 mi = 1.6 km	1 mi = 1.6 km
$\frac{x}{2.0 \text{ km}} = \frac{1 \text{ mi}}{1.6 \text{ km}}$	$\frac{x}{90.0 \text{ km}} = \frac{1 \text{ mi}}{1.6 \text{ km}}$	$\frac{x}{21.0 \text{ km}} = \frac{1 \text{ mi}}{1.6 \text{ km}}$
$x = \frac{1 \text{ mi} \cdot 2.0 \text{ km}}{1.6 \text{ km}}$	$x = \frac{1 \text{ mi} \cdot 90.0 \text{ km}}{1.6 \text{ km}}$	$x = \frac{1 \text{ mi} \cdot 21.0 \text{ km}}{1.6 \text{ km}}$
x = 1.25 mi	x = 56.25 mi	x = 13.125 mi
time = $\frac{\text{distance}}{\text{speed}}$ time = $\frac{1.25 \text{ mi}}{1.2 \text{ mi/h}}$ time $\doteq 1.04 \text{ h}$	time = $\frac{\text{distance}}{\text{speed}}$ time = $\frac{56.25 \text{ mi}}{16.5 \text{ mi/h}}$ time $\doteq 3.41 \text{ h}$	time = $\frac{\text{distance}}{\text{speed}}$ time = $\frac{13.125 \text{ mi}}{5.0 \text{ mi/h}}$ time $\doteq 2.63 \text{ h}$

Total time = 1.04 + 3.41 + 2.63

Total time \doteq 7.08 hours

The racer will complete the race in 7.08 hours.

Please complete Lesson 5.1 Game On! located in Workbook 5A before proceeding to Lesson 5.2.