Lesson 5.3 Scale Factors, Areas, Surface Areas, and Volume

Refer to Principles of Mathematics 11 pages 476-478 and 496-500 for more examples.

- Page 479, #1, 3, 5, 6, 10a, 11, 13
- Page 500, #1a, 1d, 2, 5a, 6, 9, 11, and 13

Question 1, Page 479

a.
$$k = \frac{\text{enlargement}}{\text{original}}$$

$$k = \frac{8 \text{ cm}}{2 \text{ cm}}$$

$$k = 4$$

b. Area_{Rec A} =
$$6 \times 2 = 12 \text{ cm}^2$$

Area_{Rec B} = Area_{Rec A} •
$$k^2$$

Area_{Rec B} = 12 cm² • $(4)^2$
Area_{Rec B} = 192 cm²

c. Let x = number of rectangle A that can fit in rectangle B

$$x = \text{Area}_{\text{Rec } B} \div \text{Area}_{\text{Rec } A}$$

 $x = 192 \text{ cm}^2 \div 12 \text{ cm}^2$
 $x = 16$

16 rectangle As can fit in one rectangle B.

Question 3, Page 479

Area_{enlargement} = Area_{original} •
$$k^2$$

Area_{enlargement} = 42 cm² • (5)²
Area_{Rec B} = 1050 cm²

Question 5, Page 479

a.

$$A_{\text{rec}} = 6 \times 3 = 18 \text{ units}^2$$
$$A_{\text{tri}} = \frac{3 \times 3}{2} = 4.5 \text{ units}^2$$

Total area = 22.5 units^2

$$k = \frac{1}{3}$$

 $Area_{reduction} = Area_{original} \cdot k^2$

 $Area_{reduction} = 22.5 \cdot \left(\frac{1}{3}\right)^2$

 $Area_{reduction} = 2.5 \text{ units}^2$

b.

$$A_{cir} = \pi (1.5)^2 = 7.07 \text{ units}^2$$

$$A_{tri} = \frac{3 \times 3}{2} = 4.5 \text{ units}^2$$

Total area \doteq 11.57 units²

$$k = \frac{1}{3}$$

 $Area_{reduction} = Area_{original} \cdot k^2$

Area_{reduction} =
$$11.57 \cdot \left(\frac{1}{3}\right)^2$$

 $Area_{reduction} = 1.29 \text{ units}^2$

Question 6, Page 480

a.

$k = \frac{\text{enlargment}}{\text{actual}}$	$k_{\text{width}} = \frac{\text{enlargment}}{\text{actual}}$	$k_{\text{length}} = \frac{\text{enlargment}}{\text{actual}}$
$k = \frac{150}{100}$	$1.5 = \frac{w}{4 \text{ in}}$	$1.5 = \frac{l}{6 \text{ in}}$
k = 1.5	$1.5 \cdot 4 \text{ in} = w$	$1.5 \cdot 6 \text{ in} = l$
	6 in = w	9 in = l

The inside dimensions of the frame are 6 inches by 9 inches.

b. When a shape is enlarged by a scale factor of k, the area of that shape is enlarged by a factor of $k^2 = (1.5)^2$.

$$k^2 = 2.25$$

$$2.25 \times 100\% = 225\%$$

The area of the photograph was increased by 225%.

c. Strategy #1: Input the dimensions of the enlarged photo (determined in part a) into the formula for the area of a rectangle

Strategy #2: Determine the area of the original digital photo and then multiply that area by the scale factor squared.

Question 10a, Page 480

$$k = \frac{1}{120}$$

$$k = \frac{\text{display length}}{\text{actual length}}$$

$$\frac{1}{120} = \frac{3 \text{ m}}{l}$$

$$l = 120 \cdot 3 \text{ m}$$

$$l = 360 \text{ m}$$

$$k = \frac{\text{display width}}{\text{actual width}}$$

$$\frac{1}{120} = \frac{2 \text{ m}}{w}$$

$$w = 120 \cdot 2 \text{ m}$$

$$w = 240 \text{ m}$$

$$A_{\text{People's Park}} = 360 \times 240$$

$$A_{\text{People's Park}} = 86 \ 400 \ m^2$$

Cost to maintain park = $86400 \text{ m}^2 \times \$0.75/\text{m}^2 = \$64800.00$

Question 11, Page 481

$k^{2} = \frac{1}{4}$ $\sqrt{k^{2}} = \sqrt{\frac{1}{4}}$ $k = \frac{1}{2}$	$k = \frac{\text{mural length}}{\text{actual length}}$ $\frac{1}{2} = \frac{l}{120 \text{ ft}}$ $\frac{1 \cdot 120 \text{ ft}}{2} = l$	$k = \frac{\text{mural height}}{\text{actual height}}$ $\frac{1}{2} = \frac{h}{20 \text{ ft}}$ $\frac{1 \cdot 20 \text{ ft}}{2} = h$
	60 ft = l	10 ft = h

Strengthening and Conditioning

Question 13

a. Area of enlargement = area of original • k^2

Area of enlargement area of original
$$\frac{11.25 \text{ cm}^2}{5.00 \text{ cm}^2} = k^2$$

$$2.25 = k^2$$

$$\sqrt{2.25} = \sqrt{k^2}$$

$$1.5 = k$$

b. Area of reduction = area of original • k^2

$$\frac{\text{Area of reduction}}{\text{area of original}} = k^2$$

$$\frac{3.00 \text{ cm}^2}{12.00 \text{ cm}^2} = k^2$$

$$0.25 = k^2$$

$$\sqrt{0.25} = \sqrt{k^2}$$

$$0.5 = k$$

Question 1a, Page 500

$k = \frac{\text{enlargement}}{\text{actual}}$	i. scale factor for area
•	1 2 2 4

ii. scale factor for volume = k^3 $k^3 = 2^3 = 8$

Question 1d, Page 500

$$k = \frac{\text{enlargement}}{\text{actual}}$$

$$k = \frac{5 \text{ m}}{3 \text{ m}}$$

$$k = \frac{5}{3}$$

k = 2

i. scale factor for area = k^2

$$k^2 = \left(\frac{5}{3}\right)^2 = \frac{25}{9}$$

ii. scale factor for volume = k^3

$$k^3 = \left(\frac{5}{3}\right)^3 = \frac{125}{27}$$

Question 2, Page 500

a.
$$k = \frac{\text{enlargment}}{\text{actual}}$$
$$k = \frac{600 \text{ mm}}{12 \text{ mm}}$$
$$k = 50$$

b. scale factor for area =
$$k^2$$

 $k^2 = (50)^2 = 2500$

c. scale factor for volume =
$$k^3$$

 $k^3 = (50)^3 = 125000$

Question 5a, Page 501

$$k = 3$$

$$k^{2} = \frac{\text{area of enlargement}}{\text{area of original}}$$
$$(3)^{2} = \frac{\text{area of enlargement}}{500 \text{ cm}^{2}}$$
$$9 \cdot 500 = \text{area of enlargement}$$
$$4500 \text{ cm}^{2} = \text{area of enlargement}$$

The area of each page in the large-print book is 4500 cm².

Question 6, Page 501

$$k^{3} = \frac{\text{volume of reduction}}{\text{volume of original}}$$
$$\left(\frac{3}{4}\right)^{3} = \frac{\text{volume of reduction}}{9420 \text{ cm}^{3}}$$

$$\left(\frac{3}{4}\right)^3 \cdot 9420 \text{ cm}^3 = \text{volume of reduction}$$

 $k = \frac{3}{4}$

$$\left(\frac{27}{64}\right) \cdot 9420 \text{ cm}^3 = \text{volume of reduction}$$

$$3974.06 \text{ cm}^3 \doteq \text{volume of reduction}$$

The volume of the smaller vase is 3974.06 cm³.

Question 9, Page 501

$$k_{\text{doll}} = \frac{\text{enlargment}}{\text{actual}}$$

$$k = \frac{3.5 \text{ cm}}{2 \text{ cm}}$$

$$k = 1.75$$

$$k = 1.75$$

$$k^3 = \frac{\text{volume of enlargment}}{\text{volume of original}}$$

$$(1.75)^3 = \frac{\text{volume of enlargment}}{8 \text{ cm}^3}$$

$$(1.75)^3 \cdot 8 \text{ cm}^3 = \text{volume of enlargment}$$

$$42.875 \text{ cm}^3 = \text{volume of enlargment}$$

1st doll:
$$V = 8 \text{ cm}^3$$

2nd doll: $V = 42.875 \text{ cm}^3$
3rd doll: $V \doteq 42.875 \text{ cm}^3 \times (1.75)^3 \doteq 229.8 \text{ cm}^3$
4th doll: $V \doteq 229.8 \text{ cm}^3 \times (1.75)^3 \doteq 1231.5 \text{ cm}^3$
5th doll: $V \doteq 1231.5 \text{ cm}^3 \times (1.75)^3 \doteq 6600 \text{ cm}^3$

The volume of the largest doll can be estimated to be 6600 cm³.

Question 11, Page 502

a.
$$k = \frac{\text{earth}}{\text{moon}}$$

 $k = \frac{6378.1 \text{ km}}{1737.4 \text{ km}}$
 $k \doteq 3.67$
 $k = \frac{\text{earth}}{\text{moon}}$
 $3.67 = \frac{10.0 \text{ cm}}{m}$
 $3.67m = 10.0 \text{ cm}$
 $\frac{3.67}{3.67}m = \frac{10.0 \text{ cm}}{3.67}$
 $m \doteq 2.72 \text{ cm}$

The scale radius of the moon is 2.7 cm.

c. Use the square of the scale factor to compare surface areas.

$$3.67^2:1^2=13.47:1$$

d. Use the cube of the scale factor to compare the volumes.

$$3.67^3:1^3=49.43:1$$

Question 13, Page 502

$$k = \frac{3.8 \text{ in}}{2.9 \text{ in}}$$

$$k = 1.31$$

Use the square of the scale factor to compare surface areas.

$$1.31^2 \doteq 1.72$$

$$1.72 = 172\%$$

The softball requires 172% of the material of a baseball.

172% - 100% = 72% so the softball will need 72% more material than a baseball.