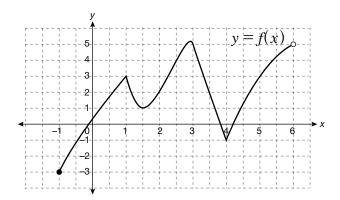


Practice - 1

Once you feel confident with local extrema, complete problems 1 to 7. Check your answers by going to the Solutions tab in Moodle.

Instructions: Answer each of the following practice questions on a separate piece of paper. Step by step solutions are provided under the Solutions tab. You will learn the material more thoroughly if you complete the questions before checking the answers.


- 1. Using the diagram below, state the coordinates of each of the following.
 - a. local (relative) minimum
 - b. local (relative) maximum
 - c. absolute minimum
 - d. absolute maximum
 - e. critical points

- 2. Find the critical point(s), intervals of increase and decrease, local maximum, and local minimum for the function $f(x) = 1 + 3x^2 2x^3$.
- 3. Find the absolute maximum and absolute minimum values for the function $f(x) = 2x^2 8x + 1$ on the interval [0,3].
- 4. Show the polynomial function $f(x) = x^5 + x$ has no critical points, and therefore has no local extrema.

ADLC Mathematics 31

- 5. Find the value of b if $f(x) = -2x^2 + bx 7$ has a local maximum at x = 4.
- 6. Give the function y = f(x),
 - a. complete the table below by describing the derivative at the points x = 1, 2, 3, 4, 5, 6.

Point	Description of Derivative
x = 1	
x = 2	
x = 3	
x = 4	
x = 5	
x = 6	

Note: At x = 1.5 the derivative would be zero because the tangent to the curve is horizontal at that point.

b. state the absolute and local extrema of the function.

3

7. Sketch the graph of a function for which the following characteristics are true.

1.
$$f(-4) = 1$$
, $f(-3) = 1.5$, $f(2) = 4$

2.
$$f(-1) = f(4) = -2$$

3.
$$f'(-3) = f'(-1) = f'(2) = f'(4) = 0$$

4.
$$f'(x) > 0$$
 on the interval $[-4, -3) \cup (-1, 2) \cup (4, \infty)$

5.
$$f'(x) < 0$$
 on the interval $(-3, -1) \cup (2, 4)$