

Practice - 1

Once you feel confident with concavity and points of inflection, complete problems 1 to 4. Check your answers by going to the Solutions tab in Moodle.

Instructions: Answer each of the following practice questions on a separate piece of paper. Step by step solutions are provided under the Solutions tab. You will learn the material more thoroughly if you complete the questions before checking the answers.

- 1. Determine where the curve $f(x) = x^4 x^3 + 2x + 1$ is concave up and where it is concave down. Find the inflection point(s).
- 2. For the function $f(x) = \sqrt{x}(x-2)$, use the Second Derivative Test to determine the local maximum and minimum values.
- 3. Given the function $f(x) = x^3 + 3x^2$,
 - a. find the critical points,
 - b. the intervals of increase and decrease,
 - c. the local extrema,
 - d. all possible inflection points,
 - e. the intervals of concavity and the actual inflection points, and then
 - f. sketch the graph.

ADLC Mathematics 31

4. Sketch the graph of a function with the following characteristics. State any inflection points.

$$f'(x)$$
 Critical points at $x = 0, \frac{3}{2}$

f''(x) Possible inflection points at x = 0, 1

Points:
$$f(-1) = 0$$
, $f(0) = 3$, $f(1) = 4$, $f(\frac{3}{2}) = \frac{75}{16}$

Intervals	x < 0	0 < x < 1	$1 < x < \frac{3}{2}$	$x > \frac{3}{2}$
Sign of $f'(x)$	+	+	+	_
Sign of $f''(x)$	_	+	_	_

