Module 8 Lesson 4 - 4
Lesson 4 — Measuring Population Growth
Distribution Patterns
Three types of distribution patterns occur in wild populations: uniform, random, and clumped. The distribution patterns are affected by the resources in the habitat, the environmental conditions, the interaction with members of a community, and the interaction within the population.

Uniform distribution
In uniform distribution, organisms are equally spaced. This pattern occurs in artificial environments such as agriculture for crop fields or tree plantations. Uniform distribution may occur in organisms that set up territories. King penguins and golden eagles exhibit a uniform pattern of distribution, for example.
Random distribution
The rarest type of pattern is random distribution, which has no identifiable pattern. This occurs in environments with minimal competition.
Clumped distribution
The most common type of pattern is clumped distribution. Organisms are grouped in areas with favourable living conditions. Humans exhibit a clumped pattern of distribution. We tend to live together in towns and cities where water, food, and shelter
are abundant.
Self-Check
Try the following questions and check your work.
-
A Case Study of Swans in Grande Prairie: A breeding flock of trumpeter swans near Grande Prairie has 50 pairs. This year saw 165 live hatchlings, no new birds joined the flock, 5 animals were shot, and 8 did not return this spring from
their migration.
How has the population of trumpeter swans changed? -
- The Canadian human population is growing significantly, yet birth rates are dropping. Use the ΔN formula to suggest three explanations.
- Population numbers have much to do with the lifespan of the organism. Why do women of Japanese ethnicity have a longer life expectancy when they live in Japan than when they live in North America? Suggest three possible reasons and explain your answers.
- How might a drought that decreased grass populations affect herbivore population numbers? Referring to the formula for ΔN, suggest four ways.
- The population size of microscopic Paramecia in a 1 L hay infusion needed to be determined. By using a depression slide (a microscope slide with a well in the centre) at medium power and averaging the results of three 1 mL samples, a technician found on average 4 Paramecia/mL of hay infusion. What was the population (N) in the entire 1 L infusion?
- Will the lack of competition and natural selection in white-tailed deer populations increase or decrease the genetic diversity of the gene pool? Explain your answer.
-
A lovely white daisy with fern-like leaves adds brightness and cheer to the roadside ditches of rural Alberta. Unfortunately, it is an inadvertently introduced species and is very invasive, competing vigorously with Indigenous wild species. Your job is
to provide data on the spread of the species, beginning with a population count in a 1 km2 parcel of land.
-
How would you count them?
- Would you do one sampling or several? Why?
- Would it be more informative to express the count as N (population size) or as density (Dp = number/area)? Explain.
-
How would you count them?
-
Your job is to determine N for black spruce in a 100 km2 parcel of land. In the chart below are the numbers of black spruce in 5 randomly chosen quadrants of 1 km2 each.
Sample (1 km2) N black spruce 1 14 2 0 3 8 4 6 5 2
Self-Check Answers
-
ΔN = (natality + immigration) - (mortality + emigration)
Δ N = (165 + 0) − (5 + 8) = 152 -
-
Because the only other factor that can increase population other than births is immigration, you can conclude that immigration must be increasing.
- Possible answers: The traditional food of Japan may be healthier. Japanese culture may have different expectations for body weight, the amount of exercise taken daily, the use of substances that decrease health, and perhaps the handling of stress.
-
Because the only other factor that can increase population other than births is immigration, you can conclude that immigration must be increasing.
-
Herbivore birth rates would drop, death rates would rise, emigration would increase, and immigration would decrease. The population would decrease.
- birth rate drop (↓): When mothers have less food, they tend to keep the energy for themselves and not have babies.
- death rate rise (↑): More competition will occur for food, and losers die.
- emigration rate rise (↑): More individuals will move from the area in search of a food supply.
- immigration rate drop (↓): Fewer individuals will move into the area because competition for food is already too high.
-
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»N«/mi»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mfrac»«mrow»«mn»4«/mn»«mo»§#160;«/mo»«mi»P«/mi»«mi»a«/mi»«mi»r«/mi»«mi»a«/mi»«mi»m«/mi»«mi»e«/mi»«mi»c«/mi»«mi»i«/mi»«mi»a«/mi»«/mrow»«mrow»«mi»m«/mi»«mi»L«/mi»«/mrow»«/mfrac»«mo»§#160;«/mo»«mo»§#215;«/mo»«mo»§#160;«/mo»«mfrac»«mrow»«mn»1000«/mn»«mo»§#160;«/mo»«mi»m«/mi»«mi»L«/mi»«/mrow»«mi»L«/mi»«/mfrac»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mn»4000«/mn»«mo»§#160;«/mo»«mfrac
bevelled=¨true¨»«mrow»«mi»P«/mi»«mi»a«/mi»«mi»r«/mi»«mi»a«/mi»«mi»m«/mi»«mi»e«/mi»«mi»c«/mi»«mi»i«/mi»«mi»a«/mi»«/mrow»«mi»L«/mi»«/mfrac»«/math»
-
The lack of competition and natural selection in white-tailed deer populations might increase or decrease the genetic diversity of the gene pool. If conditions have been highly competitive until recently, the allele frequencies of
poorer alleles will now increase in the gene pool. However, if no particular phenotype has been selected in some time, all genotypes will have equal reproductive fitness. Allele frequencies may not change significantly.
-
-
Select a small quadrant sample of 1m2 and count the number of daisies within the quadrant. Choose randomly the location of several quadrants (10) and average the results. Extrapolate that number to the number of 1m2 parcels
in the count area.
Example: The average of 10 quadrants was 4 plants/m2.
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac bevelled=¨true¨»«mrow»«mn»4«/mn»«mo»§#160;«/mo»«mi»p«/mi»«mi»l«/mi»«mi»a«/mi»«mi»n«/mi»«mi»t«/mi»«mi»s«/mi»«/mrow»«msup»«mi»m«/mi»«mn»2«/mn»«/msup»«/mfrac»«mo»§#160;«/mo»«mo»§#215;«/mo»«mo»§#160;«/mo»«mfrac bevelled=¨true¨»«mrow»«mn»1«/mn»«mo»§#160;«/mo»«mn»000«/mn»«mo»§#160;«/mo»«mn»000«/mn»«mo»§#160;«/mo»«msup»«mi»m«/mi»«mn»2«/mn»«/msup»«/mrow»«mrow»«mi»k«/mi»«msup»«mi»m«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfrac»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mn»4«/mn»«mo»§#160;«/mo»«mn»000«/mn»«mo»§#160;«/mo»«mn»000«/mn»«mo»§#160;«/mo»«mi»p«/mi»«mi»l«/mi»«mi»a«/mi»«mi»n«/mi»«mi»t«/mi»«mi»s«/mi»«mspace linebreak=¨newline¨/»«mi»N«/mi»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mn»4«/mn»«mo»§#160;«/mo»«mn»000«/mn»«mo»§#160;«/mo»«mn»000«/mn»«mo»§#160;«/mo»«mi»p«/mi»«mi»l«/mi»«mi»a«/mi»«mi»n«/mi»«mi»t«/mi»«mi»s«/mi»«mo»§#160;«/mo»«/math»
-
Plants do not show uniform distribution; therefore, averaging the results of randomly selected samples improves the statistical validity.
- Density gives a 'visual' idea of the area. N = 4 000 000 plants does not mean much to an observer, but 4 plants/m2 is much easier to visualize.
-
Select a small quadrant sample of 1m2 and count the number of daisies within the quadrant. Choose randomly the location of several quadrants (10) and average the results. Extrapolate that number to the number of 1m2 parcels
in the count area.
-
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»A«/mi»«mi»v«/mi»«mi»e«/mi»«mi»r«/mi»«mi»a«/mi»«mi»g«/mi»«mi»e«/mi»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mfrac»«mrow»«mn»14«/mn»«mo»§#160;«/mo»«mo»+«/mo»«mo»§#160;«/mo»«mn»0«/mn»«mo»§#160;«/mo»«mo»+«/mo»«mo»§#160;«/mo»«mn»8«/mn»«mo»§#160;«/mo»«mo»+«/mo»«mo»§#160;«/mo»«mn»6«/mn»«mo»§#160;«/mo»«mo»+«/mo»«mo»§#160;«/mo»«mn»2«/mn»«mo»§#160;«/mo»«/mrow»«mn»5«/mn»«/mfrac»«mo»=«/mo»«mo»§#160;«/mo»«mfrac
bevelled=¨true¨»«mrow»«mn»6«/mn»«mo»§#160;«/mo»«mi»b«/mi»«mi»l«/mi»«mi»a«/mi»«mi»c«/mi»«mi»k«/mi»«mo»§#160;«/mo»«mi»s«/mi»«mi»p«/mi»«mi»r«/mi»«mi»u«/mi»«mi»c«/mi»«mi»e«/mi»«/mrow»«mrow»«mi»k«/mi»«msup»«mi»m«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfrac»«mspace
linebreak=¨newline¨/»«mi»N«/mi»«mo»§#160;«/mo»«mo»=«/mo»«mfrac bevelled=¨true¨»«mrow»«mo»§#160;«/mo»«mn»6«/mn»«mo»§#160;«/mo»«mi»b«/mi»«mi»l«/mi»«mi»a«/mi»«mi»c«/mi»«mi»k«/mi»«mo»§#160;«/mo»«mi»s«/mi»«mi»p«/mi»«mi»r«/mi»«mi»u«/mi»«mi»c«/mi»«mi»e«/mi»«/mrow»«mrow»«mi»k«/mi»«msup»«mi»m«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfrac»«mo»§#160;«/mo»«mo»§#215;«/mo»«mo»§#160;«/mo»«mn»100«/mn»«mo»§#160;«/mo»«mi»k«/mi»«msup»«mi»m«/mi»«mn»2«/mn»«/msup»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mn»600«/mn»«mo»§#160;«/mo»«mi»b«/mi»«mi»l«/mi»«mi»a«/mi»«mi»c«/mi»«mi»k«/mi»«mo»§#160;«/mo»«mi»s«/mi»«mi»p«/mi»«mi»r«/mi»«mi»u«/mi»«mi»c«/mi»«mi»e«/mi»«mo»§#160;«/mo»«/math»
The number of black spruce in a 100-km2 parcel of land is 600.