5.1 Conservation in Non-Linear Collisions
In the previous lesson you learned about momentum and the law of conservation of momentum in the context of one-dimensional collisions: for any isolated system, the total momentum does not change. In a collision, momentum is conserved; the total momentum before the collision is equal to the total momentum after the collision.
Is the same true of two-dimensional collisions?
Image by Adrian Malec from Pixabay
Need to Review Vector Addition?Want a "vector refresher?" Go through the examples in the Vector Review page in your course. |
Lab Simulation: Two-Dimensional Collisions
Use the Collision Lab to help you answer the following questions.
Problem
Is momentum conserved in two-dimensional collisions?
Procedure
Once the simulation is open, follow these steps:
-
Select the "advanced " tab from the top left of the screen
-
Select "2 dimensions" on the right-hand menu
-
Toggle "More Data" below the data table
-
Toggle the "show paths" from the menu on the right
Perform one two-dimensional collision; then complete the following table. To generate a new collision, press the "restart" button to the left of the data table.
Observations
Collision 1 (sample data) |
|||||||
Object |
Mass |
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle indentalign=¨center¨»«msub»«mover mathcolor=¨#FFFFFF¨»«mi»v«/mi»«mo»§#8594;«/mo»«/mover»«mi mathcolor=¨#FFFFFF¨»i«/mi»«/msub»«mspace linebreak=¨newline¨»«/mspace»«mo mathcolor=¨#FFFFFF¨»(«/mo»«mi mathcolor=¨#FFFFFF¨»m«/mi»«mo mathcolor=¨#FFFFFF¨»/«/mo»«mi mathcolor=¨#FFFFFF¨»s«/mi»«mo mathcolor=¨#FFFFFF¨»)«/mo»«/mstyle»«/math» |
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle indentalign=¨center¨»«msub»«mover mathcolor=¨#FFFFFF¨»«mi»v«/mi»«mo»§#8594;«/mo»«/mover»«mi mathcolor=¨#FFFFFF¨»f«/mi»«/msub»«mspace linebreak=¨newline¨»«/mspace»«mo mathcolor=¨#FFFFFF¨»(«/mo»«mi mathcolor=¨#FFFFFF¨»m«/mi»«mo mathcolor=¨#FFFFFF¨»/«/mo»«mi mathcolor=¨#FFFFFF¨»s«/mi»«mo mathcolor=¨#FFFFFF¨»)«/mo»«/mstyle»«/math» |
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle indentalign=¨center¨»«mo mathcolor=¨#FFFFFF¨»§#8710;«/mo»«mover mathcolor=¨#FFFFFF¨»«mi»v«/mi»«mo»§#8594;«/mo»«/mover»«mspace linebreak=¨newline¨»«/mspace»«mo mathcolor=¨#FFFFFF¨»(«/mo»«mi mathcolor=¨#FFFFFF¨»m«/mi»«mo mathcolor=¨#FFFFFF¨»/«/mo»«mi mathcolor=¨#FFFFFF¨»s«/mi»«mo mathcolor=¨#FFFFFF¨»)«/mo»«/mstyle»«/math» |
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle indentalign=¨center¨»«msub»«mover mathcolor=¨#FFFFFF¨»«mi»p«/mi»«mo»§#8594;«/mo»«/mover»«mi mathcolor=¨#FFFFFF¨»i«/mi»«/msub»«mspace linebreak=¨newline¨»«/mspace»«mo mathcolor=¨#FFFFFF¨»(«/mo»«mi mathcolor=¨#FFFFFF¨»k«/mi»«mi mathcolor=¨#FFFFFF¨»g«/mi»«mo mathcolor=¨#FFFFFF¨»§#183;«/mo»«mi mathcolor=¨#FFFFFF¨»m«/mi»«mo mathcolor=¨#FFFFFF¨»/«/mo»«mi mathcolor=¨#FFFFFF¨»s«/mi»«mo mathcolor=¨#FFFFFF¨»)«/mo»«/mstyle»«/math» |
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle indentalign=¨center¨»«msub»«mover mathcolor=¨#FFFFFF¨»«mi»p«/mi»«mo»§#8594;«/mo»«/mover»«mi mathcolor=¨#FFFFFF¨»f«/mi»«/msub»«mspace linebreak=¨newline¨»«/mspace»«mo mathcolor=¨#FFFFFF¨»(«/mo»«mi mathcolor=¨#FFFFFF¨»k«/mi»«mi mathcolor=¨#FFFFFF¨»g«/mi»«mo mathcolor=¨#FFFFFF¨»§#183;«/mo»«mi mathcolor=¨#FFFFFF¨»m«/mi»«mo mathcolor=¨#FFFFFF¨»/«/mo»«mi mathcolor=¨#FFFFFF¨»s«/mi»«mo mathcolor=¨#FFFFFF¨»)«/mo»«/mstyle»«/math» |
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle indentalign=¨center¨»«mo mathcolor=¨#FFFFFF¨»§#8710;«/mo»«msub»«mover mathcolor=¨#FFFFFF¨»«mi»p«/mi»«mo»§#8594;«/mo»«/mover»«mi mathcolor=¨#FFFFFF¨»i«/mi»«/msub»«mspace linebreak=¨newline¨»«/mspace»«mo mathcolor=¨#FFFFFF¨»(«/mo»«mi mathcolor=¨#FFFFFF¨»k«/mi»«mi mathcolor=¨#FFFFFF¨»g«/mi»«mo mathcolor=¨#FFFFFF¨»§#183;«/mo»«mi mathcolor=¨#FFFFFF¨»m«/mi»«mo mathcolor=¨#FFFFFF¨»/«/mo»«mi mathcolor=¨#FFFFFF¨»s«/mi»«mo mathcolor=¨#FFFFFF¨»)«/mo»«/mstyle»«/math» |
blue |
|
|
|
|
|
|
|
green |
|
|
|
|
|
|
|
Analysis
Questions:
-
How would you calculate the total momentum before and after a two-dimensional collision?
-
Would the same analysis that you used for one-dimensional situations work here?
-
According to your observations, is momentum conserved in a two-dimensional collision?
According to the data you collected for in the previous simulations and using the typical analysis performed for a one-dimensional collision, you should find that momentum in a two-dimensional collision is not conserved. However, this is contrary to the law of conservation of momentum, which means a new type of analysis must be used for two-dimensional collisions.
This new type of analysis is based on the following principles, which apply to two-dimensional interactions:
-
Momentum in the x-direction is conserved.
-
Momentum in the y-direction is conserved.
Using the data below, determine the total momentum before and after the collision using the analysis method that was just introduced to you.
Object |
Mass (kg) |
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle indentalign=¨center¨»«msub»«mstyle indentalign=¨center¨»«mover mathcolor=¨#FFFFFF¨»«mi»v«/mi»«mo»§#8594;«/mo»«/mover»«/mstyle»«mi mathcolor=¨#FFFFFF¨»i«/mi»«/msub»«/mstyle»«/math» |
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle indentalign=¨center¨»«msub»«mstyle indentalign=¨center¨»«mover mathcolor=¨#FFFFFF¨»«mi»v«/mi»«mo»§#8594;«/mo»«/mover»«/mstyle»«mi mathcolor=¨#FFFFFF¨»f«/mi»«/msub»«/mstyle»«/math» |
||
Magnitude |
Direction |
Magnitude (m/s) |
Direction |
||
blue ball |
5.00 |
8.00 |
0 |
2.80 |
69.51 |
green ball |
5.00 |
0.0 |
0 |
7.50 |
−20.49 |
- What is the initial total momentum in the x direction?
- What is the initial total momentum in the y direction?
- What is the final total momentum in the x direction?
- What is the final total momentum in the y direction?
On the next page is an example of how to describe vectors (such as momentum) using components and how to apply the law of conservation of momentum correctly to a two-dimensional collision.