L1.2 D1 Graphs of Polynomial Functions - Part 2
Completion requirements
Unit 1
Functions
Zeros, Roots, and x-intercepts
The «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-intercepts of a function’s graph are where the graph touches or crosses the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-axis «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfenced»«mrow»«mi»y«/mi»«mo»=«/mo»«mn»0«/mn»«/mrow»«/mfenced»«/mstyle»«/math».The zeros of a function are the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-values for which the function is equal to zero «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfenced»«mrow»«mi»y«/mi»«mo»=«/mo»«mn»0«/mn»«/mrow»«/mfenced»«/mstyle»«/math».
The roots of an equation are the solutions to the equation.
As such, a function’s real zeros correspond to the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-intercepts on the graph of that same function, and correspond to the solutions, or roots, of the related equation.
A function’s graph may have zero, one, or more than one «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-intercept, and a function may have zero, one, or more real zeros. Likewise, an equation may have zero, one, or more real roots.
It is important to note that the graph of a function may not cross the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-axis at the function’s zero. It may, instead, appear to bounce off the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-axis at that point.
In the previous Example, the graph of the function simply touched the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-axis at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«mo»=«/mo»«mo»-«/mo»«mn»1«/mn»«/mstyle»«/math». When this occurs, we know the function has an even number of factors corresponding to that zero. This is referred to as the multiplicity of the zero.
The zero at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«mo»=«/mo»«mo»-«/mo»«mn»1«/mn»«/mstyle»«/math» had a multiplicity of at least «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math» (The multiplicity could have been «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»4«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mn»6«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mn»8«/mn»«/mrow»«/mstyle»«/math», etc., but we were asked to consider the function of least possible degree). As such, the factor «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«/mstyle»«/math» occurred at least twice (it could have occurred four times, six times, etc.). At a zero of even multiplicity, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mn»4«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mn»6«/mn»«mo»,«/mo»«mo»§#8230;«/mo»«mo»,«/mo»«/mstyle»«/math», a function’s graph behaves differently than at a zero of multiplicity «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»1«/mn»«/mstyle»«/math» or at a zero of odd multiplicity, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mn»5«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mn»7«/mn»«mo»,«/mo»«mo»§#8230;«/mo»«mo»,«/mo»«/mstyle»«/math». The table below summarizes some common behaviours.
Zero |
Behaviour of Graph |
Multiplicity of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»1«/mn»«/mstyle»«/math»
|
Crosses «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-axis |
Multiplicity of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math» or any even number greater than «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math»
|
Just touches the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-axis, but does not cross |
Multiplicity of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«/mstyle»«/math» or any odd number greater than «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«/mstyle»«/math»
|
Flattens out at the zero and crosses the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-axis. This type of zero corresponds to a point of inflection. |
Consider the function «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»=«/mo»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»-«/mo»«mn»3«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mstyle»«/math».
a.
Factor «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mstyle»«/math».
b.
Determine the zeros of the function.
c.
Describe the graph of the function using intervals.
a.
Consider the possible integral zeros of the function. The function is degree «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«/mstyle»«/math»; there will be at most «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«/mstyle»«/math» zeros.
The possible integral zeros are «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»§#177;«/mo»«mn»1«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mo»§#177;«/mo»«mn»2«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mo»§#177;«/mo»«mn»4«/mn»«/mstyle»«/math».
Try «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mn»1«/mn»«/mrow»«/mstyle»«/math» in the function «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mstyle»«/math». If the result is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»0«/mn»«/mstyle»«/math», then «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«mo»-«/mo»«mn»1«/mn»«/mstyle»«/math» is a factor.
Therefore, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«mo»-«/mo»«mn»1«/mn»«/mstyle»«/math» is not a factor.
Try «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«mo»=«/mo»«mo»-«/mo»«mn»1«/mn»«/mstyle»«/math».
Therefore, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mstyle»«/math» is a factor.
Now, use long division or synthetic division to determine another factor of the polynomial function.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»=«/mo»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»-«/mo»«mn»4«/mn»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«/mrow»«/mstyle»«/math»
Now, factor the trinomial into two binomials.
The possible integral zeros are «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»§#177;«/mo»«mn»1«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mo»§#177;«/mo»«mn»2«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mo»§#177;«/mo»«mn»4«/mn»«/mstyle»«/math».
Try «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mn»1«/mn»«/mrow»«/mstyle»«/math» in the function «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mstyle»«/math». If the result is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»0«/mn»«/mstyle»«/math», then «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«mo»-«/mo»«mn»1«/mn»«/mstyle»«/math» is a factor.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»g«/mi»«mfenced»«mn»1«/mn»«/mfenced»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«msup»«mfenced»«mn»1«/mn»«/mfenced»«mn»3«/mn»«/msup»«mo»-«/mo»«mn»3«/mn»«msup»«mfenced»«mn»1«/mn»«/mfenced»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»4«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»1«/mn»«mo»-«/mo»«mn»3«/mn»«mo»+«/mo»«mn»4«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»-«/mo»«mn»2«/mn»«mo»+«/mo»«mn»4«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»2«/mn»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»
Therefore, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«mo»-«/mo»«mn»1«/mn»«/mstyle»«/math» is not a factor.
Try «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«mo»=«/mo»«mo»-«/mo»«mn»1«/mn»«/mstyle»«/math».
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»g«/mi»«mfenced»«mrow»«mo»-«/mo»«mn»1«/mn»«/mrow»«/mfenced»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«msup»«mfenced»«mrow»«mo»-«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mn»3«/mn»«/msup»«mo»-«/mo»«mn»3«/mn»«msup»«mfenced»«mrow»«mo»-«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»4«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»-«/mo»«mn»1«/mn»«mo»-«/mo»«mn»3«/mn»«mo»+«/mo»«mn»4«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»-«/mo»«mn»4«/mn»«mo»+«/mo»«mn»4«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»0«/mn»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»
Therefore, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mstyle»«/math» is a factor.
Now, use long division or synthetic division to determine another factor of the polynomial function.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»=«/mo»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»-«/mo»«mn»4«/mn»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«/mrow»«/mstyle»«/math»
Now, factor the trinomial into two binomials.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»=«/mo»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mfenced»«mrow»«mi»x«/mi»«mo»-«/mo»«mn»2«/mn»«/mrow»«/mfenced»«mfenced»«mrow»«mi»x«/mi»«mo»-«/mo»«mn»2«/mn»«/mrow»«/mfenced»«/mstyle»«/math»
b.
The zeros of the function are «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mo»-«/mo»«mn»1«/mn»«/mrow»«/mstyle»«/math», «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math», and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math». Recall that the zeros of the function are the values of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» for which the function is equal to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»0«/mn»«/mstyle»«/math». The «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-values «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mo»-«/mo»«mn»1«/mn»«/mrow»«/mstyle»«/math», «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math», and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math» make the function equal to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»0«/mn»«/mstyle»«/math». Because the zero of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math» is repeated, it has a multiplicity of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math». Graphically speaking, this will correspond to a touching of the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-axis at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«mo»=«/mo»«mn»2«/mn»«/mstyle»«/math», not an intersection.
c.
The function is of degree «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«/mstyle»«/math» and it has three zeros.
The intervals are determined by the zeros of the function.
The leading coefficient is positive. This cubic function has a left end that extends downward into quadrant III and a right end that extends upward into quadrant I.
Because the graph of the function touches the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-axis at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«mo»=«/mo»«mn»2«/mn»«/mstyle»«/math», the sign of the function does not change from one side of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«mo»=«/mo»«mn»2«/mn»«/mstyle»«/math» to the other.
Putting all of this together, the following conclusions can be made.
For the first interval, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«mo»§#60;«/mo»«mo»-«/mo»«mn»1«/mn»«/mstyle»«/math», the function is negative.
For the second interval, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»-«/mo»«mn»1«/mn»«mo»§#60;«/mo»«mi»x«/mi»«mo»§#60;«/mo»«mn»2«/mn»«/mstyle»«/math», the function is positive.
For the third interval, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«mo»§#62;«/mo»«mn»2«/mn»«/mstyle»«/math», the function is positive.
Graphing the function verifies the description
The intervals are determined by the zeros of the function.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»x«/mi»«/mtd»«mtd»«mo»§#60;«/mo»«/mtd»«mtd»«mo»-«/mo»«mn»1«/mn»«/mtd»«/mtr»«mtr»«mtd»«mo»-«/mo»«mn»1«/mn»«/mtd»«mtd»«mo»§#60;«/mo»«/mtd»«mtd»«mi»x«/mi»«mo»§#60;«/mo»«mn»2«/mn»«/mtd»«/mtr»«mtr»«mtd»«mi»x«/mi»«/mtd»«mtd»«mo»§#62;«/mo»«/mtd»«mtd»«mn»2«/mn»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»
The leading coefficient is positive. This cubic function has a left end that extends downward into quadrant III and a right end that extends upward into quadrant I.
Because the graph of the function touches the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-axis at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«mo»=«/mo»«mn»2«/mn»«/mstyle»«/math», the sign of the function does not change from one side of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«mo»=«/mo»«mn»2«/mn»«/mstyle»«/math» to the other.
Putting all of this together, the following conclusions can be made.
For the first interval, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«mo»§#60;«/mo»«mo»-«/mo»«mn»1«/mn»«/mstyle»«/math», the function is negative.
For the second interval, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»-«/mo»«mn»1«/mn»«mo»§#60;«/mo»«mi»x«/mi»«mo»§#60;«/mo»«mn»2«/mn»«/mstyle»«/math», the function is positive.
For the third interval, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«mo»§#62;«/mo»«mn»2«/mn»«/mstyle»«/math», the function is positive.
Graphing the function verifies the description


You may wish to refer to your Pre-Calculus 12 textbook for more examples. Example 4 on page 145 solves a problem using a polynomial function and its graph as a model of the situation described.