Unit 1

Functions


Rational Equations and Functions

To be considered a rational function, the function must include a fraction.

In fact, the variable must appear in the denominator of the fraction for the function to be rational.

The function «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»=«/mo»«mfrac»«mn»1«/mn»«mi»x«/mi»«/mfrac»«/mrow»«/mstyle»«/math» is a rational function because the variable appears in the denominator.

It is a very basic rational function, and if «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mrow»«/mstyle»«/math», it can be graphed on the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»- and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-axes, as shown.

As with any mathematical situation, certain rules must be considered.

If a function contains a variable in the denominator, the variable cannot have a value that will result in a denominator of zero.

In other words, if «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»=«/mo»«mfrac»«mn»1«/mn»«mi»x«/mi»«/mfrac»«/mrow»«/mstyle»«/math», then «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»§#8800;«/mo»«mn»0«/mn»«/mrow»«/mstyle»«/math».

Recall from Lesson 1.1 the domain of a radical function is restricted to variable values that make the radicand greater than or equal to zero.

From the same Lesson, recall a linear function was used to help sketch the graph of the related radical function.