L2.1 B2 Reference Triangles - Part 3
Completion requirements
Unit 2
Trigonometry
In the previous example, an angle between the terminal arm and the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-axis was drawn. This angle is often called a reference angle. Reference angles can be helpful when determining the coordinates of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»P«/mi»«mfenced»«mo»§#952;«/mo»«/mfenced»«/mrow»«/mstyle»«/math».
If «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»P«/mi»«mfenced»«mo»§#952;«/mo»«/mfenced»«/mrow»«/mstyle»«/math» is the point of intersection of the terminal arm of angle «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»§#952;«/mo»«/mstyle»«/math» and the unit circle, determine the coordinates of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»P«/mi»«mfenced»«mrow»«mo»§#8722;«/mo»«mfrac»«mrow»«mn»4«/mn»«mo»§#960;«/mo»«/mrow»«mn»3«/mn»«/mfrac»«/mrow»«/mfenced»«/mrow»«/mstyle»«/math».
Start by drawing a diagram.
Again, the angle between the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-axis and the terminal arm is the reference angle. In this case it is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mo»§#8722;«/mo»«mo»§#960;«/mo»«mo»§#8722;«/mo»«mfenced»«mrow»«mo»§#8722;«/mo»«mfrac»«mrow»«mn»4«/mn»«mo»§#960;«/mo»«/mrow»«mn»3«/mn»«/mfrac»«/mrow»«/mfenced»«mo»=«/mo»«mfrac»«mo»§#960;«/mo»«mn»3«/mn»«/mfrac»«/mrow»«/mstyle»«/math». Because this angle is drawn on the unit circle, the terminal arm has a length of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»1«/mn»«/mstyle»«/math».
Use the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mfrac»«mo»§#960;«/mo»«mn»6«/mn»«/mfrac»«mo»§#8722;«/mo»«mfrac»«mo»§#960;«/mo»«mn»3«/mn»«/mfrac»«mo»§#8722;«/mo»«mfrac»«mo»§#960;«/mo»«mn»2«/mn»«/mfrac»«/mrow»«/mstyle»«/math» reference triangle.
The leg lengths of the triangle can be used to determine the coordinates of the point where the terminal arm intersects the unit circle.
So, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»P«/mi»«mfenced»«mrow»«mo»§#8722;«/mo»«mfrac»«mrow»«mn»4«/mn»«mo»§#960;«/mo»«/mrow»«mn»3«/mn»«/mfrac»«/mrow»«/mfenced»«mo»=«/mo»«mfenced»«mrow»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«mi mathvariant=¨normal¨»,«/mi»«mspace width=¨0.33em¨/»«mfrac»«msqrt»«mn»3«/mn»«/msqrt»«mn»2«/mn»«/mfrac»«/mrow»«/mfenced»«/mrow»«/mstyle»«/math».




The coordinates of point «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»P«/mi»«mfenced»«mo»§#952;«/mo»«/mfenced»«/mrow»«/mstyle»«/math», the intersection of the terminal arm of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»§#952;«/mo»«/mstyle»«/math» and the unit circle, can be used to determine possible values of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»§#952;«/mo»«/mstyle»«/math».
If «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»P«/mi»«mfenced»«mo»§#952;«/mo»«/mfenced»«/mrow»«/mstyle»«/math» is the point of intersection of the terminal arm of angle «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»§#952;«/mo»«/mstyle»«/math» and the unit circle, determine all values of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»§#952;«/mo»«/mstyle»«/math» for which «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»P«/mi»«mfenced»«mo»§#952;«/mo»«/mfenced»«mo»=«/mo»«mfenced»«mrow»«mfrac»«msqrt»«mn»3«/mn»«/msqrt»«mn»2«/mn»«/mfrac»«mi mathvariant=¨normal¨»,«/mi»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mrow»«/mfenced»«/mrow»«/mstyle»«/math», where «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»§#952;«/mo»«/mstyle»«/math» is measured in degrees.
Start by drawing a diagram.
Next, draw a vertical line from point «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»P«/mi»«/mstyle»«/math» to the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-axis to make a triangle. Notice the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»- and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-coordinates provide the lengths of the legs of the triangle.
These side lengths match the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»30«/mn»«mo»§#176;«/mo»«mo»§#8722;«/mo»«mn»60«/mn»«mo»§#176;«/mo»«mo»§#8722;«/mo»«mn»90«/mn»«mo»§#176;«/mo»«/mrow»«/mstyle»«/math» reference triangle.
If the reference angle in the triangle is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»30«/mn»«mo»§#176;«/mo»«/mrow»«/mstyle»«/math», an angle drawn in standard position is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»360«/mn»«mo»§#176;«/mo»«mo»§#8722;«/mo»«mn»30«/mn»«mo»§#176;«/mo»«mo»=«/mo»«mn»330«/mn»«mo»§#176;«/mo»«/mrow»«/mstyle»«/math».
So, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»330«/mn»«mo»§#176;«/mo»«/mstyle»«/math» is one possible value of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»§#952;«/mo»«/mstyle»«/math». Recall any angle coterminal to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»330«/mn»«mo»§#176;«/mo»«/mstyle»«/math» will also have the same terminal arm, so all angles cotermimal to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»330«/mn»«mo»§#176;«/mo»«/mstyle»«/math» will be possible values of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»§#952;«/mo»«/mstyle»«/math». Coterminal angles can be found by adding or subtracting multiples of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»360«/mn»«mo»§#176;«/mo»«/mstyle»«/math» to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»330«/mn»«mo»§#176;«/mo»«/mstyle»«/math», so «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mo»§#952;«/mo»«mo»=«/mo»«mn»330«/mn»«mo»§#176;«/mo»«mo»§#177;«/mo»«mn»360«/mn»«mo»§#176;«/mo»«mi»n«/mi»«mi mathvariant=¨normal¨»,«/mi»«mspace width=¨0.33em¨/»«mi»n«/mi»«mo»§#8712;«/mo»«mi mathvariant=¨normal¨»N«/mi»«/mrow»«/mstyle»«/math».




All possible values of «math style=¨font-family:Verdana¨
xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle
mathsize=¨14px¨»«mo»§#952;«/mo»«/mstyle»«/math» were determined in Example 6. This is often referred to as the general solution.
So far, only angles that are multiples of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»30«/mn»«mo»§#176;«/mo»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»45«/mn»«mo»§#176;«/mo»«/mstyle»«/math» («math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfrac»«mo»§#960;«/mo»«mn»6«/mn»«/mfrac»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfrac»«mo»§#960;«/mo»«mn»4«/mn»«/mfrac»«/mstyle»«/math») have been explored. However, it is possible to determine unknowns in the relationship «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»P«/mi»«mfenced»«mo»§#952;«/mo»«/mfenced»«mo»=«/mo»«mfenced»«mrow»«mi»x«/mi»«mi mathvariant=¨normal¨»,«/mi»«mspace width=¨0.33em¨/»«mi»y«/mi»«/mrow»«/mfenced»«/mrow»«/mstyle»«/math» for any angle measure. Lesson 2.2 will discuss characteristics of the three primary trigonometric ratios that will allow you to do this.
So far, only angles that are multiples of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»30«/mn»«mo»§#176;«/mo»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»45«/mn»«mo»§#176;«/mo»«/mstyle»«/math» («math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfrac»«mo»§#960;«/mo»«mn»6«/mn»«/mfrac»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfrac»«mo»§#960;«/mo»«mn»4«/mn»«/mfrac»«/mstyle»«/math») have been explored. However, it is possible to determine unknowns in the relationship «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»P«/mi»«mfenced»«mo»§#952;«/mo»«/mfenced»«mo»=«/mo»«mfenced»«mrow»«mi»x«/mi»«mi mathvariant=¨normal¨»,«/mi»«mspace width=¨0.33em¨/»«mi»y«/mi»«/mrow»«/mfenced»«/mrow»«/mstyle»«/math» for any angle measure. Lesson 2.2 will discuss characteristics of the three primary trigonometric ratios that will allow you to do this.