L2.3 A1 Graphing Trigonometric Functions Investigation
Completion requirements
Unit 2
Trigonometry
Investigation
In the previous Lesson, you learned the sine of an angle in standard position corresponds to
the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-coordinate of the point of intersection of the terminal arm of that angle and the unit circle.
In this Lesson, you will explore how to graph the sine function.
Open Graphing the Sine Function. If you are unable to access the applet, try entering “unit circle and sine graph animation” into a search engine, and take a look at the first few pages or videos.
Open Graphing the Sine Function. If you are unable to access the applet, try entering “unit circle and sine graph animation” into a search engine, and take a look at the first few pages or videos.
- There is a unit circle shown on the left of the graph.
a.
Use the slider to adjust «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»§#952;«/mo»«/mstyle»«/math» to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»4«/mn»«mi mathvariant=¨normal¨».«/mi»«mn»5«/mn»«/mrow»«/mstyle»«/math» (the left and right arrow keys can be used to make fine adjustments to the slider). What is the value of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»sin«/mi»«mn»4«/mn»«mi mathvariant=¨normal¨».«/mi»«mn»5«/mn»«/mrow»«/mstyle»«/math»?
b.
What is the value of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»sin«/mi»«mn»7«/mn»«mi mathvariant=¨normal¨».«/mi»«mn»1«/mn»«/mrow»«/mstyle»«/math»?
- Set «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»§#952;«/mo»«/mstyle»«/math» to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»0«/mn»«/mstyle»«/math» and turn on “Show Graph”. Adjust «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»§#952;«/mo»«/mstyle»«/math» and watch what happens.
a.
Set «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»§#952;«/mo»«/mstyle»«/math» to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»4«/mn»«mi mathvariant=¨normal¨».«/mi»«mn»5«/mn»«/mrow»«/mstyle»«/math». How are the coordinates of the graph related to your answer from 1a?
b.
Set «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»§#952;«/mo»«/mstyle»«/math» to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»7«/mn»«mo».«/mo»«mn»1«/mn»«/mstyle»«/math». How are the coordinates of the graph related to your answer from 1b?
c.
What do the coordinates on the graph represent?
- Is it possible to graph «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mfenced»«mo»§#952;«/mo»«/mfenced»«mo»=«/mo»«mi»cos«/mi»«mo»§#952;«/mo»«/mrow»«/mstyle»«/math» using a similar applet? Explain.
a.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mo»§#8722;«/mo»«mn»0«/mn»«mi mathvariant=¨normal¨».«/mi»«mn»98«/mn»«/mrow»«/mstyle»«/math»
b.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»0«/mn»«mi mathvariant=¨normal¨».«/mi»«mn»73«/mn»«/mrow»«/mstyle»«/math»
a.
The «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mfenced»«mo»§#952;«/mo»«/mfenced»«/mrow»«/mstyle»«/math»-value is equal to the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-coordinate of the intersection point on the unit circle, which corresponds to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»sin«/mi»«mo»§#952;«/mo»«/mrow»«/mstyle»«/math».
b.
The «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mfenced»«mo»§#952;«/mo»«/mfenced»«/mrow»«/mstyle»«/math»-value is equal to the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-coordinate of the intersection point on the unit circle, which corresponds to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»sin«/mi»«mo»§#952;«/mo»«/mrow»«/mstyle»«/math».
c.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfenced»«mrow»«mo»§#952;«/mo»«mi mathvariant=¨normal¨»,«/mi»«mspace width=¨0.33em¨/»«mi»sin«/mi»«mo»§#952;«/mo»«/mrow»«/mfenced»«/mstyle»«/math»
- A method for graphing the cosine function can be found in this lesson.
If you were unable to confidently complete this activity, contact your teacher.