Unit 2

Trigonometry


This diagram shows the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-value of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»P«/mi»«mfenced»«mrow»«mn»225«/mn»«mo»§#176;«/mo»«/mrow»«/mfenced»«/mrow»«/mstyle»«/math» is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mo»§#8722;«/mo»«mfrac»«msqrt»«mn»2«/mn»«/msqrt»«mn»2«/mn»«/mfrac»«/mrow»«/mstyle»«/math».  This corresponds to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mfenced»«mrow»«mn»225«/mn»«mo»§#176;«/mo»«/mrow»«/mfenced»«mo»=«/mo»«mo»§#8722;«/mo»«mfrac»«msqrt»«mn»2«/mn»«/msqrt»«mn»2«/mn»«/mfrac»«/mrow»«/mstyle»«/math».

So far, only «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»§#952;«/mo»«/mstyle»«/math»-values between «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»0«/mn»«mo»§#176;«/mo»«/mrow»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»360«/mn»«mo»§#176;«/mo»«/mstyle»«/math» have been used. However, it is possible to include angles outside this domain. The graph of the sine function continues forever in both directions.

Because any real angle can be used as an input for «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mfenced»«mo»§#952;«/mo»«/mfenced»«mo»=«/mo»«mi»sin«/mi»«mo»§#952;«/mo»«/mrow»«/mstyle»«/math», the domain is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfenced open=¨{¨ close=¨}¨»«mrow»«mo»§#952;«/mo»«mi mathvariant=¨normal¨»|«/mi»«mo»§#952;«/mo»«mo»§#8712;«/mo»«mi mathvariant=¨normal¨»R«/mi»«/mrow»«/mfenced»«/mstyle»«/math». The graph’s pattern repeats regularly, and is said to be periodic. The length of a cycle is called the function’s period.