L4.1 A1 Exponent Laws Warm Up
Completion requirements
Unit 4
Logarithms
Warm Up
Exponent Laws
Because of the relationship between exponents and logarithms, you will rediscover a need for the exponent laws as you continue to explore logarithms.Multiplication of powers with like bases |
Add the exponents. «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mfenced»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mfenced»«mfenced»«msup»«mi»x«/mi»«mn»4«/mn»«/msup»«/mfenced»«mo»=«/mo»«msup»«mi»x«/mi»«mn»6«/mn»«/msup»«/mrow»«/mstyle»«/math» |
Division of powers with like bases |
Subtract the exponents. «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mfrac»«msup»«mi»x«/mi»«mn»5«/mn»«/msup»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«/mfrac»«mo»=«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mi mathvariant=¨normal¨»,«/mi»«mspace width=¨0.33em¨/»«mi»x«/mi»«mo»§#8800;«/mo»«mn»0«/mn»«/mrow»«/mstyle»«/math» |
Power raised to a power |
Multiply the exponents. «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«msup»«mfenced»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«/mfenced»«mn»4«/mn»«/msup»«mo»=«/mo»«msup»«mi»x«/mi»«mn»12«/mn»«/msup»«/mrow»«/mstyle»«/math» |
Zero exponent |
Any non-zero base raised to the exponent of zero is equal to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»1«/mn»«/mstyle»«/math». «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«msup»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«msup»«mi»y«/mi»«mn»5«/mn»«/msup»«/mrow»«/mfenced»«mn»0«/mn»«/msup»«mo»=«/mo»«mn»1«/mn»«mo»;«/mo»«mspace width=¨0.33em¨/»«mi»x«/mi»«mi mathvariant=¨normal¨»,«/mi»«mspace width=¨0.33em¨/»«mi»y«/mi»«mo»§#8800;«/mo»«mn»0«/mn»«/mstyle»«/math» |
Negative exponent |
The reciprocal of a base with a negative exponent has a positive exponent. «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«msup»«mfenced»«mfrac»«mi»x«/mi»«mi»y«/mi»«/mfrac»«/mfenced»«mrow»«mo»§#8722;«/mo»«mn»2«/mn»«/mrow»«/msup»«mo»=«/mo»«msup»«mfenced»«mfrac»«mi»y«/mi»«mi»x«/mi»«/mfrac»«/mfenced»«mn»2«/mn»«/msup»«mo»=«/mo»«mfrac»«msup»«mi»y«/mi»«mn»2«/mn»«/msup»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mfrac»«mo»;«/mo»«mspace width=¨0.33em¨/»«mi»x«/mi»«mi mathvariant=¨normal¨»,«/mi»«mspace width=¨0.33em¨/»«mi»y«/mi»«mo»§#8800;«/mo»«mn»0«/mn»«/mstyle»«/math» |