Unit 4

Logarithms


Read

Part 4.2B corresponds to section 8.4, starting on page 404 of your Pre-Calculus 12 textbook.


There are a number of strategies that can be applied to solve logarithmic equations, including rewriting a logarithmic equation in exponential form, using technology to solve a logarithmic equation graphically, simplifying one or both sides of the equation using the laws of logarithms, taking the logarithm of both sides of the equation, and using the LOG function on a calculator, to name only a few.

Regardless of the strategy used, it is imperative that you identify any restrictions on the variable, and then confirm your solution(s).

Algebraic Solutions

To solve algebraically means to manipulate the equation to isolate the desired variable.

Solve «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«msub»«mi»log«/mi»«mn»7«/mn»«/msub»«mi»x«/mi»«mo»+«/mo»«msub»«mi»log«/mi»«mn»7«/mn»«/msub»«mn»4«/mn»«mo»=«/mo»«msub»«mi»log«/mi»«mn»7«/mn»«/msub»«mn»12«/mn»«/mrow»«/mstyle»«/math» algebraically.



First, note that «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»§#62;«/mo»«mn»0«/mn»«/mrow»«/mstyle»«/math» is the restriction on the variable.

Manipulate the equation so there are single logarithmic expressions on both sides of the equal sign.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«msub»«mi»log«/mi»«mn»7«/mn»«/msub»«mi»x«/mi»«mo»+«/mo»«msub»«mi»log«/mi»«mn»7«/mn»«/msub»«mn»4«/mn»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«msub»«mi»log«/mi»«mn»7«/mn»«/msub»«mn»12«/mn»«/mtd»«/mtr»«mtr»«mtd»«msub»«mi»log«/mi»«mn»7«/mn»«/msub»«mfenced»«mrow»«mi»x«/mi»«mo»§#8226;«/mo»«mn»4«/mn»«/mrow»«/mfenced»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«msub»«mi»log«/mi»«mn»7«/mn»«/msub»«mn»12«/mn»«/mtd»«/mtr»«mtr»«mtd»«msub»«mi»log«/mi»«mn»7«/mn»«/msub»«mfenced»«mrow»«mn»4«/mn»«mi»x«/mi»«/mrow»«/mfenced»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«msub»«mi»log«/mi»«mn»7«/mn»«/msub»«mn»12«/mn»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

Because the logarithms have the same base, and logarithmic functions are one-to-one, the arguments for each must be the same for the equation to be balanced.

So,

 «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mn»4«/mn»«mi»x«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»12«/mn»«/mtd»«/mtr»«mtr»«mtd»«mi»x«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»3«/mn»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

The value «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mn»3«/mn»«/mrow»«/mstyle»«/math» satisfies the variable restriction of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»§#62;«/mo»«mn»0«/mn»«/mrow»«/mstyle»«/math», and thus «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mn»3«/mn»«/mrow»«/mstyle»«/math» is a solution to the equation.

The same equation could have been solved by converting the logarithmic equation to an exponential equation.

Algebraically solve the equation «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«msub»«mi»log«/mi»«mn»7«/mn»«/msub»«mi»x«/mi»«mo»+«/mo»«msub»«mi»log«/mi»«mn»7«/mn»«/msub»«mn»4«/mn»«mo»=«/mo»«msub»«mi»log«/mi»«mn»7«/mn»«/msub»«mn»12«/mn»«/mrow»«/mstyle»«/math» by converting to an exponential equation.


Bring all terms to the left side of the equation.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«msub»«mi»log«/mi»«mn»7«/mn»«/msub»«mi»x«/mi»«mo»+«/mo»«msub»«mi»log«/mi»«mn»7«/mn»«/msub»«mn»4«/mn»«mo»§#8722;«/mo»«msub»«mi»log«/mi»«mn»7«/mn»«/msub»«mn»12«/mn»«mo»=«/mo»«mn»0«/mn»«/mrow»«/mstyle»«/math»

Simplify the left side to a single logarithmic expression using logarithmic laws.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«msub»«mi»log«/mi»«mn»7«/mn»«/msub»«mfrac»«mrow»«mn»4«/mn»«mi»x«/mi»«/mrow»«mn»12«/mn»«/mfrac»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»0«/mn»«/mtd»«/mtr»«mtr»«mtd»«msub»«mi»log«/mi»«mn»7«/mn»«/msub»«mfrac»«mi»x«/mi»«mn»3«/mn»«/mfrac»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»0«/mn»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

Now, write the logarithmic equation as an exponential equation. Then, solve for «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math».

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«msup»«mn»7«/mn»«mn»0«/mn»«/msup»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mi»x«/mi»«mn»3«/mn»«/mfrac»«/mtd»«/mtr»«mtr»«mtd»«mn»1«/mn»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mi»x«/mi»«mn»3«/mn»«/mfrac»«/mtd»«/mtr»«mtr»«mtd»«mn»3«/mn»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mi»x«/mi»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

Note either method is correct and the solution «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mn»3«/mn»«/mrow»«/mstyle»«/math» satisfies the restriction of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»§#62;«/mo»«mn»0«/mn»«/mrow»«/mstyle»«/math».


Solving Exponential Equations

Because logarithms and exponents are related, and exponents can be used to solve logarithmic equations, it follows that logarithms can be used to solve exponential equations.

Solve «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«msup»«mn»6«/mn»«mrow»«mn»3«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/msup»«mo»=«/mo»«msup»«mn»8«/mn»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«/mrow»«/msup»«/mrow»«/mstyle»«/math». 

The two sides of the equation have different bases. It is difficult to write the two expressions using the same base, so we will use logarithms to solve this equation.

Take the base «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»10«/mn»«/mstyle»«/math» logarithm of both sides of the equation.

Note: It does not matter what logarithmic base we use because as long as the same operation is done to both sides of the equation, the equation remains balanced. The common logarithm is selected because most calculators use base «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»10«/mn»«/mstyle»«/math».

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»log«/mi»«msup»«mn»6«/mn»«mrow»«mn»3«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/msup»«mo»=«/mo»«mi»log«/mi»«msup»«mn»8«/mn»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«/mrow»«/msup»«/mrow»«/mstyle»«/math»

Now, use the power law of logarithms to bring the exponents of the arguments down.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mfenced»«mrow»«mn»3«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mi»log«/mi»«mn»6«/mn»«mo»=«/mo»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«/mrow»«/mfenced»«mi»log«/mi»«mn»8«/mn»«/mrow»«/mstyle»«/math»

Now, distribute through the brackets on both sides.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»3«/mn»«mi»x«/mi»«mi»log«/mi»«mn»6«/mn»«mo»+«/mo»«mi»log«/mi»«mn»6«/mn»«mo»=«/mo»«mi»x«/mi»«mi»log«/mi»«mn»8«/mn»«mo»+«/mo»«mn»3«/mn»«mi»log«/mi»«mn»8«/mn»«/mrow»«/mstyle»«/math»

Then, collect like terms.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»3«/mn»«mi»x«/mi»«mi»log«/mi»«mn»6«/mn»«mo»§#8722;«/mo»«mi»x«/mi»«mi»log«/mi»«mn»8«/mn»«mo»=«/mo»«mn»3«/mn»«mi»log«/mi»«mn»8«/mn»«mo»§#8722;«/mo»«mi»log«/mi»«mn»6«/mn»«/mrow»«/mstyle»«/math»

Factor «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» out of the terms on the left side.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mfenced»«mrow»«mn»3«/mn»«mi»log«/mi»«mn»6«/mn»«mo»§#8722;«/mo»«mi»log«/mi»«mn»8«/mn»«/mrow»«/mfenced»«mo»=«/mo»«mn»3«/mn»«mi»log«/mi»«mn»8«/mn»«mo»§#8722;«/mo»«mi»log«/mi»«mn»6«/mn»«/mrow»«/mstyle»«/math»

Then, divide both sides by «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»3«/mn»«mi»log«/mi»«mn»6«/mn»«mo»§#8722;«/mo»«mi»log«/mi»«mn»8«/mn»«/mrow»«/mstyle»«/math» to get «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» by itself on the left.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mfrac»«mrow»«mn»3«/mn»«mi»log«/mi»«mn»8«/mn»«mo»§#8722;«/mo»«mi»log«/mi»«mn»6«/mn»«/mrow»«mrow»«mn»3«/mn»«mi»log«/mi»«mn»6«/mn»«mo»§#8722;«/mo»«mi»log«/mi»«mn»8«/mn»«/mrow»«/mfrac»«/mrow»«/mstyle»«/math»

A calculator can be used to determine a decimal approximation of the solution.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mn»1«/mn»«mi mathvariant=¨normal¨».«/mi»«mn»349«/mn»«mo»§#8230;«/mo»«/mrow»«/mstyle»«/math»

If rounded to two decimal places, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»§#8784;«/mo»«mn»1«/mn»«mi mathvariant=¨normal¨».«/mi»«mn»35«/mn»«/mrow»«/mstyle»«/math».

Note the use of brackets in the calculator entry to ensure the numerator and denominator are kept separate and evaluated properly.

Logarithms can be useful in solving problems that are related to exponential modelling.

A lab technician is testing the effectiveness of an antibiotic against a particular strain of bacteria. Her measurements indicate her test culture initially had «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»2«/mn»«mo»§#160;«/mo»«mn»000«/mn»«/mrow»«/mstyle»«/math» bacteria/mL, and dropped to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»1«/mn»«mo»§#160;«/mo»«mn»200«/mn»«/mrow»«/mstyle»«/math» bacteria/mL «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»6«/mn»«/mstyle»«/math» hours after adding the antibiotic.

To the nearest hundredth of an hour, what is the half-life of the bacteria in the presence of the antibiotic? That is, how long does it take for the bacteria concentration to decrease by half?

The half-life situation described is one of exponential decay of the form «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»N«/mi»«mfenced»«mi»t«/mi»«/mfenced»«mo»=«/mo»«msub»«mi»N«/mi»«mi»O«/mi»«/msub»«msup»«mfenced»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mfenced»«mfrac»«mi»t«/mi»«mi»h«/mi»«/mfrac»«/msup»«/mrow»«/mstyle»«/math», where «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«msub»«mi»N«/mi»«mi»O«/mi»«/msub»«/mstyle»«/math» is the initial number of bacteria per mL, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»t«/mi»«/mstyle»«/math» is the time that has passed, in hours, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»h«/mi»«/mstyle»«/math» is the half-life of the bacteria, in hours, and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»N«/mi»«mfenced»«mi»t«/mi»«/mfenced»«/mrow»«/mstyle»«/math» is the number of bacteria remaining after time «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»t«/mi»«/mstyle»«/math».

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨left¨»«mtr»«mtd»«msub»«mi»N«/mi»«mi»O«/mi»«/msub»«mo»=«/mo»«mn»2«/mn»«mspace width=¨0.33em¨/»«mn»000«/mn»«/mtd»«/mtr»«mtr»«mtd»«mi»t«/mi»«mo»=«/mo»«mn»6«/mn»«/mtd»«/mtr»«mtr»«mtd»«mi»h«/mi»«mo»=«/mo»«mi mathvariant=¨normal¨»?«/mi»«/mtd»«/mtr»«mtr»«mtd»«mi»N«/mi»«mfenced»«mi»t«/mi»«/mfenced»«mo»=«/mo»«mn»1«/mn»«mspace width=¨0.33em¨/»«mn»200«/mn»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»1«/mn»«mspace width=¨0.33em¨/»«mn»200«/mn»«mo»=«/mo»«mn»2«/mn»«mspace width=¨0.33em¨/»«mn»000«/mn»«msup»«mfenced»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mfenced»«mfrac»«mn»6«/mn»«mi»h«/mi»«/mfrac»«/msup»«/mrow»«/mstyle»«/math»

Isolate the power by dividing both sides by «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»2«/mn»«mo»§#160;«/mo»«mn»000«/mn»«/mrow»«/mstyle»«/math».

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mfrac»«mrow»«mn»1«/mn»«mspace width=¨0.33em¨/»«mn»200«/mn»«/mrow»«mrow»«mn»2«/mn»«mspace width=¨0.33em¨/»«mn»000«/mn»«/mrow»«/mfrac»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«msup»«mfenced»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mfenced»«mfrac»«mn»6«/mn»«mi»h«/mi»«/mfrac»«/msup»«/mtd»«/mtr»«mtr»«mtd»«mn»0«/mn»«mi mathvariant=¨normal¨».«/mi»«mn»6«/mn»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«msup»«mfenced»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mfenced»«mfrac»«mn»6«/mn»«mi»h«/mi»«/mfrac»«/msup»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

Now, take the common logarithm of both sides of the equation, and apply logarithmic laws.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mn»0«/mn»«mo».«/mo»«mn»6«/mn»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«msup»«mfenced»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mfenced»«mfrac»«mn»6«/mn»«mi»h«/mi»«/mfrac»«/msup»«/mtd»«/mtr»«mtr»«mtd»«mi»log«/mi»«mn»0«/mn»«mi mathvariant=¨normal¨».«/mi»«mn»6«/mn»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mi»log«/mi»«msup»«mfenced»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mfenced»«mfrac»«mn»6«/mn»«mi»h«/mi»«/mfrac»«/msup»«/mtd»«/mtr»«mtr»«mtd»«mi»log«/mi»«mn»0«/mn»«mi mathvariant=¨normal¨».«/mi»«mn»6«/mn»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfenced»«mfrac»«mn»6«/mn»«mi»h«/mi»«/mfrac»«/mfenced»«mi»log«/mi»«mfenced»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mfenced»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

Multiply both sides by «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»h«/mi»«/mstyle»«/math», and then divide by «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»0«/mn»«mo».«/mo»«mn»6«/mn»«/mrow»«/mstyle»«/math».

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»h«/mi»«mi»log«/mi»«mn»0«/mn»«mi mathvariant=¨normal¨».«/mi»«mn»6«/mn»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»6«/mn»«mi»log«/mi»«mfenced»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mfenced»«/mtd»«/mtr»«mtr»«mtd»«mi»h«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mn»6«/mn»«mi»log«/mi»«mfenced»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mfenced»«/mrow»«mrow»«mi»log«/mi»«mn»0«/mn»«mi mathvariant=¨normal¨».«/mi»«mn»6«/mn»«/mrow»«/mfrac»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

Then, determine the value of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»h«/mi»«/mstyle»«/math» by using the calculator.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»h«/mi»«mo»§#8784;«/mo»«mn»8«/mn»«mi mathvariant=¨normal¨».«/mi»«mn»14«/mn»«/mrow»«/mstyle»«/math» hours.

The bacteria has a half life of approximately «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»8«/mn»«mo».«/mo»«mn»14«/mn»«/mrow»«/mstyle»«/math» hours. After the antibiotic is administered, it will take about «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»8«/mn»«mo».«/mo»«mn»14«/mn»«/mrow»«/mstyle»«/math» hours for the bacteria concentration to drop to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»1«/mn»«mo»§#160;«/mo»«mn»000«/mn»«/mrow»«/mstyle»«/math» bacteria/mL.