Unit 6

Permutations, Combinations, and The Binomial Theorem


Permutations with Repeating Objects

In how many ways can the letters in the word “SPELL” be arranged?

Does it matter that there are two letter Ls?

If one letter L is assigned the colour green and the other letter L is assigned the colour red, then yes, the order does matter and the two letter Ls are distinguishable.


is different than


If the two Ls are considered identical, the repetition of the letter L must be considered when determining the number of permutations or arrangements of the letters in the word.

There are «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»5«/mn»«/mstyle»«/math» letters in total.

Of those five letters, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math» are the letter L.

There are «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»5«/mn»«mi mathvariant=¨normal¨»!«/mi»«/mrow»«/mstyle»«/math» ways to arrange five letters. There are «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«mi mathvariant=¨normal¨»!«/mi»«/mstyle»«/math» ways to arrange the repeated letter L.

The number of ways to arrange the letters in the word SPELL is

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mfrac»«mrow»«mn»5«/mn»«mi mathvariant=¨normal¨»!«/mi»«/mrow»«mrow»«mn»2«/mn»«mi mathvariant=¨normal¨»!«/mi»«/mrow»«/mfrac»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mn»5«/mn»«mo»§#215;«/mo»«mn»4«/mn»«mo»§#215;«/mo»«mn»3«/mn»«mo»§#215;«/mo»«mn»2«/mn»«mo»§#215;«/mo»«mn»1«/mn»«/mrow»«mrow»«mn»2«/mn»«mo»§#215;«/mo»«mn»1«/mn»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»60«/mn»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

There are «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»60«/mn»«/mstyle»«/math» possible arrangements of the letters in the word SPELL.

Pathways

The number of ways to move through a grid can be determined by thinking of direction and possible choices.

If you must move from point A to point B by moving only down or to the right, how many ways could you go?


To move from A to B you will need to move right «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»5«/mn»«/mstyle»«/math» units and down «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«/mstyle»«/math» units. This is a total of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»8«/mn»«/mstyle»«/math» units. Notice that any order of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»5«/mn»«/mstyle»«/math» moves right and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«/mstyle»«/math» moves down will take you to B. In other words, every move down can be considered identical, and every move right can be considered identical.


«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»Number«/mi»«mo»§#160;«/mo»«mi»of«/mi»«mo»§#160;«/mo»«mi»pathways«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mn»8«/mn»«mi mathvariant=¨normal¨»!«/mi»«/mrow»«mrow»«mn»5«/mn»«mi mathvariant=¨normal¨»!«/mi»«mn»3«/mn»«mi mathvariant=¨normal¨»!«/mi»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mn»8«/mn»«mo»§#215;«/mo»«mn»7«/mn»«mo»§#215;«/mo»«mn»6«/mn»«mo»§#215;«/mo»«menclose notation=¨updiagonalstrike¨»«mn»5«/mn»«mo»§#215;«/mo»«mn»4«/mn»«mo»§#215;«/mo»«mn»3«/mn»«mo»§#215;«/mo»«mn»2«/mn»«mo»§#215;«/mo»«mn»1«/mn»«/menclose»«/mrow»«mrow»«menclose notation=¨updiagonalstrike¨»«mfenced»«mrow»«mn»5«/mn»«mo»§#215;«/mo»«mn»4«/mn»«mo»§#215;«/mo»«mn»3«/mn»«mo»§#215;«/mo»«mn»2«/mn»«mo»§#215;«/mo»«mn»1«/mn»«/mrow»«/mfenced»«/menclose»«mfenced»«mrow»«mn»3«/mn»«mo»§#215;«/mo»«mn»2«/mn»«mo»§#215;«/mo»«mn»1«/mn»«/mrow»«/mfenced»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mn»8«/mn»«mo»§#215;«/mo»«mn»7«/mn»«mo»§#215;«/mo»«mn»6«/mn»«/mrow»«mrow»«mn»3«/mn»«mo»§#215;«/mo»«mn»2«/mn»«mo»§#215;«/mo»«mn»1«/mn»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»56«/mn»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

There are «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»56«/mn»«/mstyle»«/math» ways to move from point A to B by only moving down or right.

Permutations with Constraints

Sometimes constraints need to be accounted for when determining a number of permutations.

Six students and one driver are riding in a seven person van with three middle seats and two back seats. One student cannot ride in the two back rows because of car sickness. In how many ways can the van be filled?

There is a constraint on the number of possible seating arrangements for the students. The driver’s seat is not a possible choice because none of the students are driving. There are «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»6«/mn»«/mstyle»«/math» remaining seats: «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»1«/mn»«/mstyle»«/math» front passenger seat, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«/mstyle»«/math» middle seats, and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math» back seats.

The front passenger seat must be occupied by the student who suffers from car sickness, so there is only one way to fill this seat. The middle and back seats can be occupied by the remaining «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»5«/mn»«/mstyle»«/math» students.

Front Passenger seat can be filled «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»1«/mn»«/mstyle»«/math» way.

The middle seat «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»1«/mn»«/mstyle»«/math» can be filled «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»5«/mn»«/mstyle»«/math» ways.

The middle seat «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math» can be filled «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»4«/mn»«/mstyle»«/math» ways.

The middle seat «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«/mstyle»«/math» can be filled «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«/mstyle»«/math» ways.

The back seat «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»1«/mn»«/mstyle»«/math» can be filled «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math» ways.

The back seat «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math» can be filled «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»1«/mn»«/mstyle»«/math» way.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»1«/mn»«mo»§#215;«/mo»«mn»5«/mn»«mo»§#215;«/mo»«mn»4«/mn»«mo»§#215;«/mo»«mn»3«/mn»«mo»§#215;«/mo»«mn»2«/mn»«mo»§#215;«/mo»«mn»1«/mn»«mo»=«/mo»«mn»120«/mn»«/mrow»«/mstyle»«/math»

There are «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»120«/mn»«/mstyle»«/math» ways the students can be arranged in the van.