Compare Your Answers
Completion requirements
-
Determine the number of terms in the arithmetic sequence \(17, 11, 5, ..., -31\).
\(\begin{align}
t_1&= 17 \\
d&= 11 - 17 = -6 \\
t_n&= -31 \\
n&= ? \\
\end{align}\)
\(\begin{align}
t_n&= t_1 + \left( {n - 1} \right)d \\
-31&= 17 + \left( {n - 1} \right)\left( {-6} \right) \\
-48&= -6n + 6 \\
-54&= -6n \\
9&= n \\
\end{align}\)
-
The \(21\)st term of an arithmetic sequence is \(83\). Determine the first term, given that the common difference is \(3\).
\(\begin{align}
t_1&= ? \\
d&= 3 \\
t_{21}&= 83 \\
n&= 21 \\
\end{align}\)
\(\begin{align}
t_n&= t_1 + \left( {n - 1} \right)d \\
83&= t_1 + \left( {21 - 1} \right)3 \\
83&= t_1 + 60 \\
23&= t_1 \\
\end{align}\)