Compare Your Answers
Completion requirements
Solve the following systems of equations.
-
«math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨18px¨»«mfenced open=¨{¨ close=¨¨»«mtable columnalign=¨left¨»«mtr»«mtd»«mi»y«/mi»«mo»=«/mo»«mn»3«/mn»«mi»x«/mi»«mo»+«/mo»«mn»6«/mn»«/mtd»«/mtr»«mtr»«mtd»«mi»y«/mi»«mo»=«/mo»«mo»-«/mo»«mn»5«/mn»«mi»x«/mi»«mo»-«/mo»«mn»3«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«/mstyle»«/math»
<br>
<br>
<div id="atto_collapsible_1421005247" class="atto_collapsible">
<div class="card" id="atto_collapsible_1421005247_0">
<div class="card-header" id="atto_collapsible_1421005247_0_title"><a class="collapsed" data-toggle="collapse" data-target="#atto_collapsible_1421005247_0_content" aria-expanded="false" aria-controls="atto_collapsible_1421005247_0_content" role="button">
Solution</a></div>
<div style="height: 0px;" id="atto_collapsible_1421005247_0_content" class="collapse" aria-labelledby="atto_collapsible_1421005247_0_title" data-parent="#atto_collapsible_1421005247">
<div class="card-body">
Look for similarities between the two equations. Both have \(1y \). By
subtracting the second equation from the first equation, you can
eliminate the \(y \) variable. Then, you can solve for \(x \).
<br>
<br>
<div class="row">
<div class="col-md-3">\[\begin{align}
\cancel {y} &= 3x + 6 \\
-(\cancel {y} &= -5x - 3) \\
\hline {} \\
0 &= 8x + 9 \\
-9 &= 8x \\
-\frac{9}{8} &= x \\
\end{align}\]
\(\begin{align}
y &= 3x + 6 \\
y &= 3\left( { -\frac{9}{8}} \right) + 6 \\
y &= \frac{{21}}{8} \\
\end{align}\)
The solution to this system is \(x = -\frac{9}{8}\) and \(y = \frac{21}{8} \).
7p + {\cancel {4q}} &= 64 \\
-(8p + {\cancel {4q}} &= 34) \\
\hline {} \\
-1p + 0q &= 30 \\
p &= -30 \\
\end{align}\]
Next, solve for \(q \) by using one of the two original equations.
\(\begin{align}
7p + 4q &= 64 \\
7\left( { -30} \right) + 4q &= 64 \\
-210 + 4q &= 64 \\
4q &= 274 \\
q &= 68.5 \\
\end{align} \)
The solution to this system is \(p = -30 \) and \(q = 68.5 \).