Compare Your Answers
Completion requirements
- Calculate the sum of the following arithmetic series:
\(18 + 5 - 8 - 21 - ... - 164 \)Regardless of which formula you want to use, both need the value of \(n \), so start by finding \(n \) using the general term formula.Then, use the value of \(n \) in either of the sum of an arithmetic series formulas.\(\begin{align}
t_1 &= 18 \\
t_n &= -164 \\
d &= 5 - 18 = -13 \\
n &= ? \\
\end{align}\)\(\begin{align}
t_n &= t_1 + \left( {n - 1} \right)d \\
-164 &= 18 + \left( {n - 1} \right)\left( {-13} \right) \\
-182 &= -13n + 13 \\
-195 &= -13n \\
15 &= n \\
\end{align}\)
\(\begin{align}
S_n &= \frac{n}{2}\left[ {t_1 + t_n } \right] \\
S_{15} &= \frac{{15}}{2}\left[ {18 - 164} \right] \\
S_{15} &= 7.5\left( {-146} \right) \\
S_{15} &= -1095 \\
\end{align}\)
The sum of the series is \(-1095\). - Calculate the sum of the first \(25\) terms of the following arithmetic series:\[\frac{1}{4} + \frac{1}{2} + \frac{3}{4} + ...\]This time, you are given the value of \(n \), but you do not have the value of \(t_n \), so the longer version of the sum of an arithmetic series formula can be used.\[\begin{align}
t_1 &= \frac{1}{4} \\
n &= 25 \\
d &= \frac{1}{4} \\
S_n &= ?
\end{align}\]\[\begin{align}
S_n &= \frac{n}{2}\left[ {2t_1 + (n - 1)d} \right] \\
S_{25} &= \frac{{25}}{2}\left[ {2\left( {\frac{1}{4}} \right) + \left( {25 - 1} \right)\left( {\frac{1}{4}} \right)} \right] \\
S_{25} &= 12.5\left[ {\frac{1}{2} + 6} \right] \\
S_{25} &= 81.25 \\
\end{align}\]
The sum of the first \(25\) terms is \(81.25\).
- Find \(t_{15} \) and \(S_{15} \) of the following series:
\(2.4 + 2.8 + 3.2 + ... \)Use the general term for arithmetic sequences to find \(t_{15} \).Then, use either arithmetic series formula to find \(S_{15} \).\[\begin{align}
t_1 &= 2.4 \\
t_{15} &= ? \\
n &= 15 \\
d &= 2.8 - 2.4 = 0.4 \\
\end{align}\]\(\begin{align}
t_n &= t_1 + \left( {n - 1} \right)d \\
t_{15} &= 2.4 + \left( {15 - 1} \right)0.4 \\
t_{15} &= 2.4 + 5.6 \\
t_{15} &= 8 \\
\end{align} \)\[
\begin{align}
S_n &= \frac{n}{2}\left[ {t_1 + t_n } \right] \\
S_{15} &= \frac{{15}}{2}\left[ {2.4 + 8} \right] \\
S_{15} &= 7.5\left( {10.4} \right) \\
S_{15} &= 78 \\
\end{align}
\]