Example 1
Completion requirements
Example 1 |
Determine if the following infinite sequences are geometric. Justify your decisions.
-
\(2, 6, 18, 54, ...\)
In order for the sequence to be considered geometric, there must be a common ratio. Calculate \(r \) for pairs of consecutive terms.
\[\begin{align}
r &= \frac{t_n }{t_{n - 1}} \\
r& = \frac{6}{2} = 3 \\
r &= \frac{18}{6} = 3 \\
r &= \frac{54}{18} = 3 \\
\end{align}\]
-
\(1, 2, 6, 24, ...\)
Calculate \(r \) for pairs of consecutive terms.
\[\begin{align}
r &= \frac{t_n }{t_{n - 1}} \\
r &= \frac{2}{1} = 2 \\
r &= \frac{6}{2} = 3 \\
\end{align} \]
-
\(100, 50, 25, 12.5, ...\)
Calculate \(r \) for pairs of consecutive terms.
\[\begin{align}
r &= \frac{t_n }{t_{n - 1}} \\
r &= \frac{50}{100} = 0.5 \\
r &= \frac{25}{50} = 0.5 \\
r &= \frac{12.5}{25} = 0.5 \\
\end{align} \]
Because \(r \) is constant, this is a geometric sequence.
-
\(\frac{1}{7}, -\frac{1}{49}, \frac{1}{343}, -\frac{1}{2401}, ...\)
Calculate \(r \) for pairs of consecutive terms.
\[\begin{align}
r &= \frac{{t_n }}{{t_{n - 1} }} \\
r &= \frac{{ -\frac{1}{{49}}}}{{\frac{1}{7}}} = -\frac{1}{7} \\
r &= \frac{{\frac{1}{{343}}}}{{ - \frac{1}{{49}}}} = -\frac{1}{7} \\
r &= \frac{{ -\frac{1}{{2{\rm{ }}401}}}}{{\frac{1}{{343}}}} = -\frac{1}{7} \\
\end{align} \]