Compare Your Answers
Completion requirements
Determine \(t_4 \) and \(t_7 \) of a geometric sequence with \(t_1 =
15\) and \(r = -\frac{1}{3}\). Leave your answers as fractions.
\[\begin{align}
t_n &= t_1 r^{n - 1} \\
t_4 &= 15\left( { - \frac{1}{3}} \right)^{4 - 1} \\
t_4 &= -\frac{5}{9} \\
\end{align}\]
t_n &= t_1 r^{n - 1} \\
t_4 &= 15\left( { - \frac{1}{3}} \right)^{4 - 1} \\
t_4 &= -\frac{5}{9} \\
\end{align}\]
\[\begin{align}
t_n &= t_1 r^{n - 1} \\
t_7 &= 15\left( { -\frac{1}{3}} \right)^{7 - 1} \\
t_7 &= \frac{5}{{243}} \\
\end{align} \]
t_n &= t_1 r^{n - 1} \\
t_7 &= 15\left( { -\frac{1}{3}} \right)^{7 - 1} \\
t_7 &= \frac{5}{{243}} \\
\end{align} \]