Compare Your Answers
Completion requirements
Assume that the following sequences are geometric. Find the missing terms, and write the general term.
- \(405,\_\_\_,\_\_\_,15,\_\_\_\)\(\begin{align}
t_1 &= 405 \\
t_4 &= 15 \\
n &= 4 \\
r &= ? \\
\end{align}\)
\[\begin{align}
t_n &= t_1 r^{n - 1} \\
15 &= 405r^{4 - 1} \\
\frac{1}{{27}} &= r^3 \\
\sqrt[3]{{\frac{1}{{27}}}} &= r \\
\frac{1}{3} &= r \\
\end{align}\]
The sequence is \(405, 135, 45, 15, 5\).
The general term is \(t_n = t_1 r^{n - 1} = 405\left( {\frac{1}{3}} \right)^{n - 1} \). - \(\_\_\_,\frac{1}{{16}},\_\_\_,\_\_\_,\frac{1}{{1\thinspace 024}}\)Equation I
Equation II\[\begin{align}
t_1 &= ? \\
t_2 &= \frac{1}{16} \\
n &= 2 \\
r &= ? \\
\end{align}\]
\[\begin{align}
t_n &= t_1 r^{n - 1} \\
\frac{1}{{16}} &= t_1 r^{2 - 1} \\
\frac{1}{{16}} &= t_1 r \\
\frac{1}{{16r}} &= t_1 \\
\end{align}\]
Both equations equal \(t_1 \).\[\begin{align}
t_1 &= ? \\
t_5 &= \frac{1}{{1\thinspace 024}} \\
n &= 5 \\
r &= ? \\
\end{align}\]\[\begin{align}
t_n &= t_1 r^{n - 1} \\
\frac{1}{{1\thinspace 024}} &= t_1 r^{5 - 1} \\
\frac{1}{{1\thinspace 024}} &= t_1 r^4 \\
\frac{1}{{1\thinspace 024r^4 }} &= t_1 \\
\end{align}\]
\[\begin{align}
\frac{1}{{1\thinspace 024r^4 }} &= \frac{1}{{16r}} \\
16r &= 1\thinspace 024r^4 \\
\frac{{16}}{{1\thinspace 024}} &= \frac{{r^4 }}{r} \\
\frac{1}{{64}} &= r^3 \\
\sqrt[3]{{\frac{1}{{64}}}} &= r \\
\frac{1}{4} &= r \\
\end{align}\]
Alternatively, you can note that the two known terms are three steps away from each other; therefore,
\(\begin{array}{l}
r^3 = \frac{{\frac{1}{{1\thinspace 024}}}}{{\frac{1}{{16}}}} \\
r^3 = \frac{{16}}{{1\thinspace 024}} \\
r^3 = \frac{1}{{64}} \\
\end{array}\)
The terms in the sequence are:
\(\frac{1}{4}, {\rm{ }}\frac{1}{{16}}, {\rm{ }}\frac{1}{{64}}, {\rm{ }}\frac{1}{{256}}, {\rm{ }}\frac{1}{{1\thinspace 024}}\)
The general term is:
\[\begin{align}
t_n &= t_1 r^{n - 1} \\
t_n &= \frac{1}{4}\left( {\frac{1}{4}} \right)^{n - 1} \\
t_n &= \left( {\frac{1}{4}} \right)^{1 + n - 1} \\
t_n &= \left( {\frac{1}{4}} \right)^n \\
\end{align}\]