Determine the sums of the following geometric series.

  1. \(1 + 5 + 25 + 125 + ... + t_6 \)

    Use a geometric series formula to find the sum of the series.
    \[\begin{align}
    t_1 &= 1 \\
    r &= \frac{5}{1} = 5 \\
    n &= 6 \\
    S_6 &= ? \\
    \end{align}\]

    \[\begin{align}
     S_n &= \frac{{t_1 \left( {r^n - 1} \right)}}{{r - 1}} \\
     S_6 &= \frac{{1\left( {5^6 - 1} \right)}}{{5 - 1}} \\
     S_6 &= \frac{{15\thinspace 624}}{4} \\
     S_6 &= 3\thinspace 906 \\
     \end{align}\]
    The sum of the series is \(3\thinspace 906\).

  2. \(S_8 = 16 + 4 + 1 + \frac{1}{4} + ... \)

    Use a geometric series formula to find the sum of the series.

    \[\begin{align}
    t_1 &= 16 \\
    r &= \frac{4}{16} = \frac{1}{4} \\
    n &= 8 \\
    S_8 &= ? \\
    \end{align}\]

    \[\begin{align}
     S_n &= \frac{t_1(r^n - 1)}{r - 1} \\
     S_8 &= \frac{16\left [{\frac{1}{4}}^8 - 1\right ]}{\frac{1}{4} - 1} \\
     S_8 &= \frac{-15.999...}{-\frac{3}{4}} \\
     S_8 &= 21.333... \\
     S_8 &= \frac{21\thinspace 845}{1\thinspace 024} \\
     \end{align}\]

    Watch how you put this expression into your calculator! Use brackets, and lots of them.

    To see how to evaluate this expression using your calculator, please see the Calculator Guide.

  3. \(t_n = 32, t_1 = \frac{1}{16}, r = -2 \)

    Because \(n \) is not given, you can use the second formula.

    \(\begin{align}
     S_n &= \frac{{rt_n - t_1 }}{{r - 1}} \\
     S_n &= \frac{{\left( {-2} \right)\left( {32} \right) - \left( {\frac{1}{{16}}} \right)}}{{-2 - 1}} \\
     S_n &= \frac{{\frac{{-1\thinspace 025}}{{16}}}}{{-3}} \\
     S_n &= 21.354... \\
     S_n &= \frac{{1\thinspace 025}}{{48}} \\
     \end{align}\)