Compare Your Answers
Completion requirements
Determine the sums of the following geometric series.
-
\(1 + 5 + 25 + 125 + ... + t_6 \)
Use a geometric series formula to find the sum of the series.The sum of the series is \(3\thinspace 906\).\[\begin{align}
t_1 &= 1 \\
r &= \frac{5}{1} = 5 \\
n &= 6 \\
S_6 &= ? \\
\end{align}\]\[\begin{align}
S_n &= \frac{{t_1 \left( {r^n - 1} \right)}}{{r - 1}} \\
S_6 &= \frac{{1\left( {5^6 - 1} \right)}}{{5 - 1}} \\
S_6 &= \frac{{15\thinspace 624}}{4} \\
S_6 &= 3\thinspace 906 \\
\end{align}\]
-
\(S_8 = 16 + 4 + 1 + \frac{1}{4} + ... \)
Use a geometric series formula to find the sum of the series.\[\begin{align}
t_1 &= 16 \\
r &= \frac{4}{16} = \frac{1}{4} \\
n &= 8 \\
S_8 &= ? \\
\end{align}\]\[\begin{align}
S_n &= \frac{t_1(r^n - 1)}{r - 1} \\
S_8 &= \frac{16\left [{\frac{1}{4}}^8 - 1\right ]}{\frac{1}{4} - 1} \\
S_8 &= \frac{-15.999...}{-\frac{3}{4}} \\
S_8 &= 21.333... \\
S_8 &= \frac{21\thinspace 845}{1\thinspace 024} \\
\end{align}\]
Watch how you put this expression into your calculator! Use brackets, and lots of them.
To see how to evaluate this expression using your calculator, please see the Calculator Guide.
-
\(t_n = 32, t_1 = \frac{1}{16}, r = -2 \)
Because \(n \) is not given, you can use the second formula.
\(\begin{align}
S_n &= \frac{{rt_n - t_1 }}{{r - 1}} \\
S_n &= \frac{{\left( {-2} \right)\left( {32} \right) - \left( {\frac{1}{{16}}} \right)}}{{-2 - 1}} \\
S_n &= \frac{{\frac{{-1\thinspace 025}}{{16}}}}{{-3}} \\
S_n &= 21.354... \\
S_n &= \frac{{1\thinspace 025}}{{48}} \\
\end{align}\)