Compare Your Answers
Completion requirements
Determine the sum of each infinite geometric series, if a sum exists.
-
\(18 - 6 + 2 - ... \)
First, decide if the infinite geometric series is convergent or divergent by calculating \(r \).\[r = \frac{{t_n }}{{t_{n - 1} }} = \frac{{-6}}{{18}} = -\frac{1}{3}\]
Because \(-1 < r < 1 \), the infinite geometric series is convergent; therefore, a sum can be determined.\[\begin{align}
S_\infty &= \frac{{t_1 }}{{1 - r}} \\
S_\infty &= \frac{{18}}{{1 - \left( {-\frac{1}{3}} \right)}} \\
S_\infty &= 13.5 \\
\end{align}\]
-
\(3 - 9 + 27 - ... \)
\[r = \frac{{t_n }}{{t_{n - 1} }} = \frac{{-9}}{3} = -3\]
Because \(r < -1 \), the infinite geometric series is divergent; therefore, a sum cannot be determined.
-
\(60 + 6 + 0.6 + ... \)
\[r = \frac{{t_n }}{{t_{n - 1} }} = \frac{6}{{60}} = 0.1\]
Because \(-1 < r < 1 \), the infinite geometric series is convergent; therefore, a sum can be determined.\[\begin{align}
S_\infty &= \frac{{t_1 }}{{1 - r}} \\
S_\infty &= \frac{{60}}{{1 - 0.1}} \\
S_\infty &= 66.\overline 6 \\
\end{align} \]