In a research lab, an antibiotic is tested by exposing it to a bacteria. Because of the presence of the antibiotic, the number of bacteria in each new generation is \(70\%\) of the number in the previous generation. There were \(24\thinspace 000\) bacteria initially.

  1. Find the number of bacteria in the first five generations.

    The first five terms are:
    \(\begin{align}
     t_1 &= 24\thinspace 000 \\
     t_2 &= 24\thinspace 000\left( {0.70} \right) = 16\thinspace 800 \\
     t_3 &= 16\thinspace 800\left( {0.70} \right) = 11\thinspace 760 \\
     t_4 &= 11\thinspace 760\left( {0.70} \right) = 8\thinspace232 \\
     t_5 &= 8\thinspace 232\left( {0.70} \right) = 5\thinspace762 \\
     \end{align} \)

  2. Assuming nothing inhibits the growth of bacteria, what is the total number of bacteria in the first five generations?

    While you could add up the terms from above, a more efficient method is to use a sum of geometric series formula.

    \(\begin{align}
     S_n &= \frac{{t_1 \left( {r^n - 1} \right)}}{{r - 1}} \\
     S_5 &= \frac{{24\thinspace000\left[ {\left( {0.70} \right)^5 - 1} \right]}}{{0.70 - 1}} \\
     S_5 &= 66\thinspace554.4 \\
     \end{align}\)


    The total population in the first five generations is \(66\thinspace 554\).

  3. Assuming nothing inhibits the growth of bacteria, has the population reached \(100\thinspace 000\) by the tenth generation?

    \(\begin{align}
     S_n &= \frac{{t_1 \left( {r^n - 1} \right)}}{{r - 1}} \\
     S_{10} &= \frac{{24\thinspace000\left[ {\left( {0.70} \right)^{10} - 1} \right]}}{{0.70 - 1}} \\
     S_{10} &= 77 \thinspace740.19081 \\
     S_{10} &\buildrel\textstyle.\over =  77\thinspace 740 \\
     \end{align}\)


    No, the population has only reached \(77\thinspace 740\).

  4. If this growth trend continues indefinitely, how many bacteria will there be in the population?

    Because \(-1 < r < 1 \), you can use the sum of an infinite geometric series formula.

    \(\begin{align}
     S_\infty &= \frac{{t_1 }}{{1 - r}} \\
     S_\infty &= \frac{{24\thinspace 000}}{{1 - 0.70}} \\
     S_\infty &= 80\thinspace 000 \\ 
     \end{align}\)


    If the trend continues indefinitely, there will be \(80\thinspace 000\) bacteria.

 For more examples on geometric series, please read through pp. 58 - 63 in Pre-Calculus 11.