For the linear function \(y = 5x - 2 \),

  1. Complete the table of values.

    x (input)
     y (output)
     (x, y)
      \(−2 \)   \(y = 5({\color{red}{-2}}) - 2 = {\color{red}{-12}} \)
    \(({\color{red}{-2, -12}}) \)
    \(\color{red}-7 = 5x - 2 \)
    \(\color{red}-5 = 5x \)
    \(\color{red}-1 = x \)
      \(−7 \) \(\color{red}{(-1, -7)} \)
    \(0\)   \(\color{red}{y = 5(0) - 2 = -2} \)
    \(\color{red}{(0, -2)} \) 
    \(1\)   \(\color{red}{y = 5(1) - 2 =3} \)
    \(\color{red}{(1, 3)} \)
    \({\color{red}{\begin{align}
     8 &= 5x - 2 \\
    10 &= 5x \\
     2 &= x \\
     \end{align}}}\)

    \(8\) \((2, 8) \)


  2. Plot the points from the table of values on the Cartesian coordinate plane. 

  3. Connect the ordered pairs (points) in a line, using a straight edge.

    Window Settings
    XMin \(−3 \)
    XMax \(3 \)
    XScale
    \(1\)
    YMin \(−14\)
    YMax \(10\)
    YScale \(2\)