Example 2
Completion requirements
Example 2 |
Factor each of the following binomials.
Original
(Expanded form) |
Find the GCF
|
Determine the other factor
|
Factored form
|
\(2x^2 - 10x\) | |
||
\(6x^2y - 18xy\) |
Original
(Expanded form) |
Find the GCF
|
Determine the other factor
|
Factored form
|
\(2x^2 - 10x\) |
\(\begin{align}2x^2 &= {\color{red} 2 \cdot x} \cdot x \\
10x &= {\color{red} 2} \cdot 5 \cdot {\color{red}x} \\ {\rm{GCF}} &= \color{red}2x \\ \end{align}\) |
\(\begin{align}
\frac{{2x^2 - 10x}}{{2x}} &= \frac{{2x^2 }}{{2x}} - \frac{{10x}}{{2x}} \\ &= x - 5 \\ \end{align}\) |
\(2x(x - 5) \)
|
\(6x^2y - 18xy\) |
\(\begin{align}
6x^2y &= {\color{red} 2 \cdot 3 \cdot x} \cdot x \cdot \color{red} y \\ 18xy &= {\color{red}2 \cdot 3} \cdot 3 \cdot \color{red} x \cdot y \\ {\rm{GCF}} &= {\color{red}2 \cdot 3 \cdot x \cdot y} = \color{red}6xy \\ \end{align}\) |
\(\begin{align}
\frac{{6x^2y - 18xy}}{{6xy}} &= \frac{{6x^2y}}{{6xy}} - \frac{{18xy}}{{6xy}} \\ &= x - 3 \\ \end{align}\) |
\(6xy(x - 3) \)
|