Fully factor the following expressions.

  1. \(3x^2 - 9x\)

    GCF = \(3x\)

    \(\begin{align}
     \frac{{3x^2 - 9x}}{{3x}} &= \frac{{3x^2 }}{{3x}} - \frac{{9x}}{{3x}} = x - 3 \\
     3x^2 - 9x &= 3x\left( {x - 3} \right) \\
     \end{align}\)


  2. \(x^2 - x - 30\)

    No GCF

    Product of \(-30 = -6(5)\)
    Sum of \(-1 = -6 + 5\)

    \(\begin{align}
     x^2 - x - 30 &= x^2  - 6x + 5x - 30 \\
      &= x\left( {x - 6} \right) + 5\left( {x - 6} \right) \\
      &= \left( {x - 6} \right)\left( {x + 5} \right) \\
     \end{align}\)

  3. \(12x^2 - 5x - 3\)

    No GCF

    Product of \(12(-3) = -36 = -9(4)\)
    Sum of \(-5 = -9 + 4\)
    \(\begin{align}
     12x^2 - 5x - 3 &= 12x^2  - 9x + 4x - 3 \\
      &= 3x\left( {4x - 3} \right) + \left( {4x - 3} \right) \\
      &= \left( {4x - 3} \right)\left( {3x + 1} \right) \\
     \end{align}\)

    Notice the coefficient in front of the second \(4x - 3\) is \(1\).


  4. \(2n^2 + 9n + 4\)

    No GCF

    Product of \(2(4) = 8 = 8(1)\)
    Sum of \(9 = 8 + 1\)

    \(\begin{align}
     2n^2 + 9n + 4 &= 2n^2 + 8n + 1n + 4 \\
      &= 2n\left( {n + 4} \right) + \left( {n + 4} \right) \\
      &= \left( {n + 4} \right)\left( {2n + 1} \right) \\
     \end{align}\)