Compare Your Answers
Completion requirements
Factor the following differences of squares.
-
\(\frac{1}{{25}}x^2 - 9\)
\[\frac{1}{{25}}x^2 - 9 = \left( {\frac{1}{5}x + 3} \right)\left( {\frac{1}{5}x - 3} \right)\]
-
\(64x^2 - y^6 \)
\(64x^2 - y^6 = \left( {8x + y^3 } \right)\left( {8x - y^3 } \right)\)
-
\(\left( {x^2 - 2y^2 } \right)^2 - 4y^4\)
\(\begin{align}
\left( {x^2 - 2y^2} \right)^2 - 4y^4 &= \left[ {\left( {x^2 - 2y^2} \right) + 2y^2} \right]\left[ {\left( {x^2 - 2y^2} \right) - 2y^2} \right] \\
&= x^2 \left( {x^2 - 4y^2} \right) \\
&= x^2 \left( {x - 2y} \right)\left( {x + 2y} \right) \\
\end{align}\)
For further information about Factoring Polynomials see pp. 218 to 222 of Pre-Calculus 11. |