Compare Your Answers
Completion requirements
Determine the zeros of the factored quadratic function \(g(x) = -4(2x + 5)(x - 1)\).
In order for the function to be equal to zero, either \((2x + 5)\) or \((x - 1)\) must be equal to zero. Therefore,
The zeros of the function are \(x = -\frac{5}{2}\) and \(x = 1\).
\(\begin{align}
2x + 5 &= 0 \\
2x &= -5 \\
x &= -\frac{5}{2} \\
\end{align}\)
2x + 5 &= 0 \\
2x &= -5 \\
x &= -\frac{5}{2} \\
\end{align}\)
or
\(\begin{align}
x - 1 &= 0 \\
x &= 1 \\
\end{align}\)
x - 1 &= 0 \\
x &= 1 \\
\end{align}\)