Compare Your Answers
Completion requirements
Determine the zeros of the following quadratic functions by factoring.
-
\(y = 2x^2 - 14x + 24\)
\(\begin{array}{l}
y = 2x^2 - 14x + 24 \\
y = 2\left( {x^2 - 7x + 12} \right) \\
\end{array}\)
You need a sum of \(-7\) and a product of \(12\).
\(\begin{array}{l}
-4 + \left( { -3} \right) = -7 \\
\left( {- 4} \right)\left( {- 3} \right) = 12 \\
\end{array}\)
\(y = 2\left( {x - 3} \right)\left( {x - 4} \right)\)
\(\begin{align}
x - 3 &= 0 \\
x &= 3 \\
\end{align}\)\(\begin{align}
x - 4 &= 0 \\
x &= 4 \\
\end{align}\)
The zeros are \(3\) and \(4\).
-
\(f(x) = -3x^2 + 9x + 84\)
\(\begin{array}{l}
f\left( x \right) = -3x^2 + 9x + 84 \\
f\left( x \right) = -3\left( {x^2 - 3x - 28} \right) \\
\end{array}\)
You need a sum of \(–3\) and a product of \(–28\).
\(\begin{array}{l}
4 + \left( { -7} \right) = -3 \\
\left( 4 \right)\left( { -7} \right) = -28 \\
\end{array}\)
\(f\left( x \right) = -3\left( {x + 4} \right)\left( {x - 7} \right)\)
\(\begin{align}
x + 4 &= 0 \\
x &= -4 \\
\end{align}\)\(\begin{align}
x - 7 &= 0 \\
x &= 7 \\
\end{align}\)
The zeros are \(–4\) and \(7\).
-
\(f(x) = 2x^2 - x - 3\)
No GCF.
You need a sum of \(–1\) and a product of \(–6\).
\(\begin{array}{l}
-3 + 2 = -1 \\
\left( { - 3} \right)\left( 2 \right) = -6 \\
\end{array}\)
Factor by decomposition.
\(\begin{array}{l}
f\left( x \right) = 2x^2 - x - 3 \\
f\left( x \right) = 2x^2 - 3x + 2x - 3 \\
f\left( x \right) = x\left( {2x - 3} \right) + 1\left( {2x - 3} \right) \\
f\left( x \right) = \left( {2x - 3} \right)\left( {x + 1} \right) \\
\end{array}\)
\(\begin{align}
2x - 3 &= 0 \\
2x &= 3 \\
x &= \frac{3}{2} \\
\end{align}\)\(\begin{align}
x + 1 &= 0 \\
x &= -1 \\
\end{align}\)
The zeros are \(\frac{3}{2}\) and \(-1\).