1. Determine the following characteristics of the graph given below, and then write the equation of the quadratic function in standard form.

    Graph Characteristic Answer
    Direction of opening
    Coordinates of the vertex
    Equation of the axis of symmetry
    Maximum of minimum value
    \(x\)-intercept(s)
    \(y\)-intercept
    Domain
    Range


    Graph Characteristic Answer
    Direction of opening downward, therefore \(a < 0\)
    Coordinates of the vertex \((4, 9) \)
    Equation of the axis of symmetry \(x = 4\)
    Maximum of minimum value maximum of \(9 \)
    \(x\)-intercept(s) \(1\) and \(7 \)
    \(y\)-intercept \(–7 \)
    Domain {\(x | x \in\) R}
    Range {\(y | y \le 9\), \(y \in\) R}

    Using this information, determine the equation of the function.

    \(\begin{array}{l}
     f\left( x \right) = a\left( {x - p} \right)^2 + q \\
     f\left( x \right) = a\left( {x - 4} \right)^2 + 9 \\
     \end{array}\)


    Use the \(y\)-intercept to calculate \(a\).

    \(\begin{align}
      -7 &= a\left( {0 - 4} \right)^2 + 9 \\
      -16 &= 16a \\
      -1 &= a \\
      \\
     f\left( x \right) &= -\left( {x - 4} \right)^2 + 9  \end{align}\)


    This equation is in vertex form. Convert to standard form by expanding and simplifying.

    \(\begin{array}{l}
     f\left( x \right) = -\left( {x - 4} \right)^2  + 9 \\
     f\left( x \right) = -\left( {x^2 - 8x + 16} \right) + 9 \\
     f\left( x \right) = -x^2 + 8x - 16 + 9 \\
     f\left( x \right) = -x^2 + 8x - 7 \\
     \end{array}\)

  2. A quadratic function has only one zero at \(x = 3\).  The graph of the function passes through \((1, –16)\).  Write the equation of the function in standard form.

    One zero indicates that both factors are the same for the function.

    \(y = a\left( {x - 3} \right)^2 \)

    Use the given point to determine \(a\).

    \(\begin{align}
      -16 &= a\left( {1 - 3} \right)^2  \\
      -16 &= a\left( { -2} \right)^2  \\
      -4 &= a \\
     \end{align}\)


    Substitute \(–4\) for \(a\) and expand to standard form.

    \(\begin{array}{l}
     y = -4\left( {x - 3} \right)^2  \\
     y = -4\left( {x^2 - 6x + 9} \right) \\
     y = -4x^2 + 24x - 36 \\
     \end{array}\)