Example  2

Solve \(12m^2 - 5m = 3\) by factoring, and then verify the solution.

Step 1: Rearrange the equation so one side of the equal sign is zero.

\(\begin{align}
 12m^2 - 5m &= 3 \\
 12m^2 - 5m - 3 &= 0 \\
 \end{align}\)


Step 2
: Factor the quadratic expression.

\(12m^2 - 5m - 3 = 0\)

Product of \(12(–3) = –36\), sum of \(–5 \)

The two numbers are \(–9\) and \(4\).

Decompose the middle term, group, and factor.

\(\begin{align}
 12m^2 - 5m - 3 &= 0 \\
 12m^2 - 9m + 4m - 3 &= 0 \\
 3m\left( {4m - 3} \right) + \left( {4m - 3} \right) &= 0 \\
 \left( {4m - 3} \right)\left( {3m + 1} \right) &= 0 \\
 \end{align}\)


Step 3: Determine what value of the variable makes each factor equal to zero.

\(\begin{align}
 4m - 3 &= 0 \\
 4m &= 3 \\
 m &= \frac{3}{4}  \end{align}\)
\(\begin{align}
 3m + 1 &= 0 \\
 3m &= -1 \\
 m &= -\frac{1}{3}
 \end{align}\)

The solutions are \(\frac{3}{4}\) and \(-\frac{1}{3}\).

Step 4: Verify the solutions by substituting them into the original equation.

For \(m = \frac{3}{4}\),

Left Side
Right Side
\[\begin{array}{r}
 12m^2 - 5m \\
 12\left( {\frac{3}{4}} \right)^2 - 5\left( {\frac{3}{4}} \right) \\
 12\left( {\frac{9}{{16}}} \right) - \frac{{15}}{4} \\
 \frac{{27}}{4} - \frac{{15}}{4} \\
 \frac{{12}}{4} \\
 3  \end{array}\]

\(3\)
                   LS = RS

The two sides are equal, so \(\frac{3}{4}\) is a solution.
For \(m = -\frac{1}{3}\),

Left Side
Right Side
\[\begin{array}{r}
 12m^2 - 5m \\
 12\left( {-\frac{1}{3}} \right)^2 - 5\left( { - \frac{1}{3}} \right) \\
 12\left( {\frac{1}{9}} \right) + \frac{5}{3} \\
 \frac{4}{3} + \frac{5}{3} \\
 \frac{9}{3} \\
 3  \end{array}\]

\(3 \)
                           LS = RS

The two sides are equal, so \(-\frac{1}{3}\) is a solution.