Solve \(3a^2 - 48 = 0\) by factoring.  Verify your solution(s).


One side of the equation is \(0\), so factor the quadratic expression. Begin by taking out the GCF.

GCF = \(3\)

\(\begin{align}
 3a^2 - 48 &= 0 \\
 3\left( {a^2 - 16} \right) &= 0  \end{align}\)


Factor \(a^2 - 16\) as a difference of squares.

\(a^2 - 16 = \left( {a - 4} \right)\left( {a + 4} \right)\)

\(\begin{align}
 3\left( {a^2 - 16} \right) = 0 \\
 3\left( {a - 4} \right)\left( {a + 4} \right) = 0  \end{align}\)


Determine what values of the variable make each factor equal to zero.

\(\begin{align}
 a - 4 &= 0 \\
 a &= 4 \\
 \end{align}\)

\(\begin{align}
 a + 4 &= 0 \\
 a &= -4 \\
 \end{align}\)

The solutions to \(3a^2 - 48 = 0\) are \(4\) and \(–4\). Verify the solutions by substituting them into the original equation.

For \(a = 4\),

Left Side
Right Side
\(\begin{array}{r}
 3a^2 - 48 \\
 3\left( 4 \right)^2 - 48 \\
 3\left( {16} \right) - 48 \\
 48 - 48 \\
 0  \end{array}\)

\(0\)
   LS = RS

The two sides are equal, so \(4\) is a solution.
For \(a = -4\),

Left Side
Right Side
\(\begin{array}{r}
 3a^2 - 48 \\
 3\left( { -4} \right)^2 - 48 \\
 3\left( {16} \right) - 48 \\
 48 - 48 \\
 0  \end{array}\)

\(0\)
      LS = RS

The two sides are equal, so \(–4\) is a solution.
 For further information about Factoring Quadratic Equations see pp. 218 to 229 of Pre-Calculus 11.