Example  1

Solve \(\left( {x - 1} \right)^2 - 36 = 0\), and verify the solution.

Step 1: Isolate the squared binomial.

\(\begin{align}
 \left( {x - 1} \right)^2 - 36 &= 0 \\
 \left( {x - 1} \right)^2 &= 36 \\
 \end{align}\)

Note that in order to get a positive number before you take the square root, \(a\) and \(q\) must be opposite signs!

Step 2: Take the square root of both sides.

\(\begin{align}
 \sqrt {\left( {x - 1} \right)^2 } &= \pm \sqrt {36}  \\
 x - 1 &= \pm 6 \\
 \end{align}\)


Step 3: Solve for \(x\).

\(x = 1 \pm 6\)

As a result, there are two solutions or roots: \(x = 1 + 6 = 7\) and \(x = 1 - 6 = -5\)

Step 4: Verify.

Verify these solutions by substituting \(–5\) and \(7\) for \(x\) in the original equation.


Left Side
Right Side
\(\begin{array}{r}
 \left( {x - 1} \right)^2 - 36 \\
 \left( { - 5 - 1} \right)^2 - 36 \\
 \left( { - 6} \right)^2 - 36 \\
 36 - 36 \\
 0  \end{array}\)

\(0\)
          LS = RS

The two sides are equal, so \(x = –5\) is a solution.

Left Side
Right Side
\(\begin{array}{r}
 \left( {x - 1} \right)^2 - 36 \\
 \left( {7 - 1} \right)^2 - 36 \\
 \left( 6 \right)^2 - 36 \\
 36 - 36 \\
 0  \end{array}\)

\(0\)
        LS = RS

The two sides are equal, so \(x = 7\) is a solution.