Example  2

Find the roots of \(x^2 + 10x + 4 = 0\) by completing the square.

Step 1: Start by converting the equation to vertex form by completing the square.

\(\begin{align}
 x^2 + 10x + 4 &= 0 \\
 \left( {x^2 + 10x} \right) + 4 &= 0 \\
 \left( {x^2 + 10x + 5^2 - 5^2 } \right) + 4 &= 0 \\
 \left( {x^2 + 10x + 5^2 } \right) + 4 - 25 &= 0 \\
 \left( {x + 5} \right)^2 - 21 &= 0 \end{align}\)


Step 2
: Isolate the squared binomial, then take the square root of both sides.

\(\begin{align}
 \left( {x + 5} \right)^2 - 21 &= 0 \\
 \left( {x + 5} \right)^2 &= 21 \\
 \sqrt {\left( {x + 5} \right)^2} &= \pm \sqrt {21}  \\
 x + 5 &= \pm \sqrt {21}   \end{align}\)


Step 3
: Solve for \(x\).

\(\begin{align}
 x + 5 &= \pm \sqrt {21}  \\
 x &= -5 \pm \sqrt {21}  \\
 x &= -5 + \sqrt {21} \thinspace {\rm{ and }} \thinspace x = -5 - \sqrt {21}   \end{align}\)

The question does not ask for rounded solutions, so leave them as exact values.