Solve \(-2\left( {x + 3} \right)^2 + \frac{8}{9} = 0\), and verify the solution.

Step 1: Isolate the squared binomial.

\(\begin{align}
  -2\left( {x + 3} \right)^2 + \frac{8}{9} &= 0 \\
  -2\left( {x + 3} \right)^2 &= - \frac{8}{9} \\
 \left( {x + 3} \right)^2 &= \frac{4}{9}  \end{align}\)


Step 2: Take the square root of both sides.

\(\begin{align}
 \left( {x + 3} \right)^2 &= \frac{4}{9} \\
 \sqrt {\left( {x + 3} \right)^2 } &= \pm \sqrt {\frac{4}{9}}  \\
 x + 3 &= \pm \frac{2}{3} \end{align}\)


Step 3: Solve for \(x\).

\(x = -3 \pm \frac{2}{3}\)

As a result, there are two solutions or roots: \(x = -3 + \frac{2}{3} = -\frac{7}{3}\) and \(x = -3 -\frac{2}{3} = -\frac{{11}}{3}\)

Step 4: Verify.

Verify these solutions by substituting \(-\frac{7}{3}\) and \(-\frac{11}{3}\) for \(x\) in the original equation.


Left Side
Right Side
\[\begin{array}{r}
  - 2\left( {x + 3} \right)^2 + \frac{8}{9} \\
  - 2\left( { - \frac{7}{3} + 3} \right)^2 + \frac{8}{9} \\
  - 2\left( {\frac{2}{3}} \right)^2 + \frac{8}{9} \\
  - 2\left( {\frac{4}{9}} \right) + \frac{8}{9} \\
  - \frac{8}{9} + \frac{8}{9} \\
 0  \end{array}\]

\(0\)
                       LS = RS

The two sides are equal, so \(x = -\frac{7}{3}\) is a solution.

Left Side
Right Side
\[\begin{array}{r}
  - 2\left( {x + 3} \right)^2 + \frac{8}{9} \\
  - 2\left( { - \frac{{11}}{3} + 3} \right)^2 + \frac{8}{9} \\
  - 2\left( { - \frac{2}{3}} \right)^2 + \frac{8}{9} \\
  - 2\left( {\frac{4}{9}} \right) + \frac{8}{9} \\
  - \frac{8}{9} + \frac{8}{9} \\
 0 \end{array}\]

\(0\)
                          LS = RS

The two sides are equal, so \(x = -\frac{11}{3}\) has been verified as a solution.



For further information about Solving Quadratic Equations by Completing the Square see pp. 234 to 240 of Pre-Calculus 11.