Example 1
Completion requirements
Example 1 |
Solve the equation \(2x^2 + 6x + 1 = 0\) using the quadratic formula, and express the roots as exact values.
Step 1: Substitute the values of \(a\), \(b\), and \(c\) into the quadratic formula.
\(\begin{align}
a &= 2 \\
b &= 6 \\
c &= 1 \end{align}\)
Step 2: Simplify.
Because all three terms have a GCF of \(2\), simplify by dividing all three terms by \(2\).
Step 3: State each root individually, as an exact value.
\(x = \frac{{ - 3 + \sqrt 7 }}{2}\) and \(x = \frac{{ - 3 - \sqrt 7 }}{2}\)
Step 4: Verify by substituting the solutions into the original equation.
The solutions to the quadratic equation \(2x^2 + 6x +
1 = 0\) are \(x = \frac{{ - 3 + \sqrt 7 }}{2}\) and \(x = \frac{{ - 3 -
\sqrt 7 }}{2}\).
\(\begin{align}
a &= 2 \\
b &= 6 \\
c &= 1 \end{align}\)
\[\begin{array}
x = \frac{{ - b \pm \sqrt {b^2 - 4ac} }}{{2a}} \\
x = \frac{{ - 6 \pm \sqrt {6^2 - 4\left( 2 \right)\left( 1 \right)} }}{{2\left( 2 \right)}} \\
\end{array}\]
x = \frac{{ - b \pm \sqrt {b^2 - 4ac} }}{{2a}} \\
x = \frac{{ - 6 \pm \sqrt {6^2 - 4\left( 2 \right)\left( 1 \right)} }}{{2\left( 2 \right)}} \\
\end{array}\]
Step 2: Simplify.
\[\begin{align}
x &= \frac{{ -6 \pm \sqrt {36 - 8} }}{4} \\
x &= \frac{{ -6 \pm \sqrt {28} }}{4} \\
x &= \frac{{ -6 \pm 2\sqrt 7 }}{4} \\
x &= \frac{{ -3 \pm \sqrt 7 }}{2} \end{align}\]
x &= \frac{{ -6 \pm \sqrt {36 - 8} }}{4} \\
x &= \frac{{ -6 \pm \sqrt {28} }}{4} \\
x &= \frac{{ -6 \pm 2\sqrt 7 }}{4} \\
x &= \frac{{ -3 \pm \sqrt 7 }}{2} \end{align}\]
Because all three terms have a GCF of \(2\), simplify by dividing all three terms by \(2\).
Step 3: State each root individually, as an exact value.
\(x = \frac{{ - 3 + \sqrt 7 }}{2}\) and \(x = \frac{{ - 3 - \sqrt 7 }}{2}\)
Step 4: Verify by substituting the solutions into the original equation.
For \(x = \frac{{ - 3 + \sqrt 7 }}{2}\),
Left Side |
Right Side |
---|---|
\(\begin{array}{r} 2x^2 + 6x + 1 \\ 2\left( {\frac{{ - 3 + \sqrt 7 }}{2}} \right)^2 + 6\left( {\frac{{ - 3 + \sqrt 7 }}{2}} \right) + 1 \\ 2\left[ {\frac{{\left( { - 3 + \sqrt 7 } \right)^2 }}{4}} \right] + 3\left( { - 3 + \sqrt 7 } \right) + 1 \\ 2\left[ {\frac{{\left( {9 - 3\sqrt 7 - 3\sqrt 7 + 7} \right)}}{4}} \right] + 3\left( { - 3 + \sqrt 7 } \right) + 1 \\ \frac{{\left( {9 - 6\sqrt 7 + 7} \right)}}{2} - 9 + 3\sqrt 7 + 1 \\ \frac{{16 - 6\sqrt 7 }}{2} - 8 + 3\sqrt 7 \\ 8 - 3\sqrt 7 - 8 + 3\sqrt 7 \\ 0 \end{array}\) |
\(0\) |
LS = RS |
For \(x = \frac{{ - 3 - \sqrt 7 }}{2}\)
Left Side |
Right Side |
---|---|
\(\begin{array}{r} 2x^2 + 6x + 1 \\ 2\left( {\frac{{ - 3 - \sqrt 7 }}{2}} \right)^2 + 6\left( {\frac{{ - 3 - \sqrt 7 }}{2}} \right) + 1 \\ 2\left[ {\frac{{\left( { - 3 - \sqrt 7 } \right)^2 }}{4}} \right] + 3\left( { - 3 - \sqrt 7 } \right) + 1 \\ 2\left[ {\frac{{\left( {9 + 3\sqrt 7 + 3\sqrt 7 + 7} \right)}}{4}} \right] + 3\left( { - 3 - \sqrt 7 } \right) + 1 \\ \frac{{\left( {9 + 6\sqrt 7 + 7} \right)}}{2} - 9 - 3\sqrt 7 + 1 \\ \frac{{16 + 6\sqrt 7 }}{2} - 8 - 3\sqrt 7 \\ 8 + 3\sqrt 7 - 8 - 3\sqrt 7 \\ 0 \end{array}\) |
\(0\) |
LS = RS |