Compare Your Answers
Completion requirements
-
A quadratic equation is given as \(36a^2 - 22 = 3\).
-
Use the quadratic formula to solve the equation.
\(\begin{array}{l}
36a^2 - 22 = 3 \\
36a^2 - 25 = 0 \\
\end{array}\)
\(a = 36, b = 0, c = -25\)
\[\begin{array}
x = \frac{{ - b \pm \sqrt {b^2 - 4ac} }}{{2a}} \\
x = \frac{{ - 0 \pm \sqrt {0^2 - 4\left( {36} \right)\left( { - 25} \right)} }}{{2\left( {36} \right)}} \\
x = \frac{{ \pm \sqrt {3600} }}{{72}} \\
x = \frac{{ \pm 60}}{{72}} \\
x = \pm \frac{5}{6} \\
x = \frac{5}{6} \thinspace {\rm{and} } \thinspace x = - \frac{5}{6}
\end{array}\]
Left Side
Right Side
\[\begin{array}{r}
36a^2 - 22 \\
36\left( {\frac{5}{6}} \right)^2 - 22 \\
36\left( {\frac{{25}}{{36}}} \right) - 22 \\
25 - 22 \\
3 \end{array}\]\(3\) LS = RS
Left Side
Right Side
\[\begin{array}{r}
36a^2 - 22 \\
36\left( { - \frac{5}{6}} \right)^2 - 22 \\
36\left( {\frac{{25}}{{36}}} \right) - 22 \\
25 - 22 \\
3 \end{array}\]\(3\) LS = RS
-
Explain how the equation could be solved by factoring.
Rearrange the equation so one side is equal to zero. Factor by recognizing a difference of squares. Equate each factor to zero and solve for \(x\).
-
Solve by factoring.
\(\begin{align}
36a^2 - 22 &= 3 \\
36a^2 - 25 &= 0 \\
\left( {6a - 5} \right)\left( {6a + 5} \right) &= 0 \\
\end{align}\)
\(\begin{align}
6a - 5 &= 0 \\
a &= \frac{5}{6}
\end{align}\)
\(\begin{align}
6a + 5&= 0 \\
a &= -\frac{5}{6}
\end{align}\)
-
Solve \(6x^2 + 5x + 12 = 4x^2 + 15\) using the quadratic formula.
\(\begin{array}{l}
6x^2 + 5x + 12 = 4x^2 + 15 \\
2x^2 + 5x - 3 = 0 \\
\end{array}\)
\(a = 2, b = 5, c = -3\)
\[\begin{align}
x &= \frac{{ - b \pm \sqrt {b^2 - 4ac} }}{{2a}} \\
x &= \frac{{ - 5 \pm \sqrt {5^2 - 4\left( 2 \right)\left( { - 3} \right)} }}{{2\left( 2 \right)}} \\
x &= \frac{{ - 5 \pm \sqrt {25 + 24} }}{4} \\
x &= \frac{{ - 5 \pm \sqrt {49} }}{4} \\
x &= \frac{{ - 5 \pm 7}}{4} \end{align}\]
\(x = \frac{{ - 5 + 7}}{4} = \frac{1}{2}\) and \(x = \frac{{ - 5 - 7}}{4} = -3 \)
Notice that the original equation is used to verify. This helps to ensure no errors were made in the initial steps of the solution.
Left Side
Right Side
\[\begin{array}{r}
6x^2 + 5x + 12 \\
6\left( {\frac{1}{2}} \right)^2 + 5\left( {\frac{1}{2}} \right) + 12 \\
6\left( {\frac{1}{4}} \right) + \frac{5}{2} + 12 \\
\frac{6}{4} + \frac{{10}}{4} + \frac{{48}}{4} \\
\frac{{64}}{4} \\
16 \end{array}\]
\[\begin{array}{l}
4x^2 + 15 \\
4\left( {\frac{1}{2}} \right)^2 + 15 \\
4\left( {\frac{1}{4}} \right) + 15 \\
1 + 15 \\
16 \end{array}\]
LS = RS
Left Side
Right Side
\[\begin{array}{r}
6x^2 + 5x + 12 \\
6\left( { - 3} \right)^2 + 5\left( { - 3} \right) + 12 \\
6\left( 9 \right) - 15 + 12 \\
54 - 15 + 12 \\
51 \end{array}\]
\[\begin{array}{l}
4x^2 + 15 \\
4\left( { - 3} \right)^2 + 15 \\
4\left( 9 \right) + 15 \\
36 + 15 \\
51 \end{array}\]
LS = RS