Example 1
Completion requirements
Example 1 |
Verify each of the following.
Note that the index \(2\) is not generally written because \(\sqrt{ }\) is assumed to be the square root, \(\sqrt{x} = \sqrt[{2}]{x}\).
-
\(\sqrt[{2}]{16}= 4\)
\(\begin{align}
\sqrt[{2}]{4 \cdot 4} &= 4 \\
\sqrt[{2}]{4^2} &= 4 \\
4 &= 4 \\
\end{align}\)
-
\(\sqrt[{3}]{125} = 5\)
\(\begin{align}
\sqrt[{3}]{5 \cdot 5 \cdot 5} &= 5 \\
\sqrt[{3}]{5^3} &= 5 \\
5 &= 5 \\
\end{align}\)
Note that the index \(2\) is not generally written because \(\sqrt{ }\) is assumed to be the square root, \(\sqrt{x} = \sqrt[{2}]{x}\).