Example  1

Verify each of the following.

  1. \(\sqrt[{2}]{16}= 4\)

    \(\begin{align}
    \sqrt[{2}]{4 \cdot 4} &= 4 \\
    \sqrt[{2}]{4^2} &= 4 \\
    4 &= 4 \\
    \end{align}\)

  2. \(\sqrt[{3}]{125} = 5\)

    \(\begin{align}
    \sqrt[{3}]{5 \cdot 5 \cdot 5} &= 5 \\
    \sqrt[{3}]{5^3} &= 5 \\
    5 &= 5 \\
    \end{align}\)

Note that the index \(2\) is not generally written because \(\sqrt{ }\) is assumed to be the square root, \(\sqrt{x} = \sqrt[{2}]{x}\).