Example  4

Simplify \(\sqrt{8w^3q^2}\).

Step 1: Rewrite the radicand as a product of factors, looking specifically for factors that are perfect squares. 

\(\begin{align} 
 \sqrt{8w^3 q^2} &= \sqrt {4w^2q^2\cdot 2w}  \\ 
  &= \sqrt {2^2w^2q^2\cdot 2w}  \\ 
 \end{align}\)
 

Step 2: Rewrite the radical as a product of the perfect square radicals and the non-perfect square radicals. 

\(\sqrt{2^2w^2q^2\cdot 2w} = \sqrt {2^2} \cdot \sqrt{w^2}\cdot \sqrt{q^2 }\cdot \sqrt{2w}\) 

Step 3: Simplify. 

\(\sqrt{2^2 }\cdot \sqrt{w^2 }\cdot \sqrt{q^2}\cdot \sqrt{2w} = 2qw\sqrt {2w}\) 

Therefore, \(\sqrt {8w^3q^2} = 2qw\sqrt{2w} \)