Example  6

Write \(2r\sqrt{15}\) as an entire radical.

Step 1: Move the coefficient into the radicand by applying an exponent equal to the index of the radical. 

\(2r\sqrt{15} = \sqrt{(2r)^2} \cdot \sqrt{15}\)

Step 2: Because the index values of the two radicals are equal, multiply the radicands together, combining them into one radical.

\(\sqrt{(2r)^2} \cdot \sqrt{15} = \sqrt{2^2 \cdot r^2 \cdot 15}\)

Step 3: Simplify.

\(\begin{align}
 \sqrt{2^2 \cdot r^2 \cdot 15} &= \sqrt{{4 \cdot r^2 \cdot 15}} \\ 
  &= \sqrt{60r^2} \\ 
 \end{align}\)


Therefore, \(2r\sqrt{15} = \sqrt{60r^2}\).