Example  3

Simplify the expression \(\sqrt {72} + 4\sqrt[3]{{3r}} - \sqrt[3]{{81r}} + \sqrt {162} \).  Identify any restrictions on the variable.

Step 1: Identify any restrictions on the variable.

Because the index is odd (three), there are no restrictions on \(r\).

\(r \in \rm R\)

Step 2
: Simplify individual radicals, where possible.

\(\begin{align}
 \sqrt {72} + 4\sqrt[3]{{3r}} - \sqrt[3]{{81r}} + \sqrt {162} &= \sqrt {36\cdot 2} + 4\sqrt[3]{{3r}} - \sqrt[3]{{27\cdot 3r}} + \sqrt {81\cdot 2}  \\ 
  &= 6\sqrt 2 + 4\sqrt[3]{{3r}} - 3\sqrt[3]{{3r}} + 9\sqrt 2  \\ 
 \end{align}\)


Step 3: Collect like terms to simplify the expression.

\(\begin{align}
 {\color{blue}6\sqrt 2} {\color{red}+ 4\sqrt[3]{{3r}} - 3\sqrt[3]{{3r}}} {\color{blue}+ 9\sqrt 2} &= {\color{blue}\left( {6 + 9} \right)\sqrt 2} {\color{red}+ \left( {4 - 3} \right)\sqrt[3]{{3r}}} \\ 
  &= {\color{blue}15\sqrt 2} +{\color{red} \sqrt[3]{{3r}}} \\ 
 \end{align}
\)