Example 2
Completion requirements
Example 2 |
Simplify the expression \(\frac{{6\sqrt[3]{{48}}}}{{2\sqrt[3]{3}}}\).
Step 1: Divide the coefficients and divide the radicands.
Step 2: Check to see if the radical can be further simplified.
Therefore, \(\frac{{6\sqrt[3]{{48}}}}{{2\sqrt[3]{3}}} = 6\sqrt[3]{2}\).
Step 1: Divide the coefficients and divide the radicands.
\[\begin{align}
\frac{{6\sqrt[3]{{48}}}}{{2\sqrt[3]{3}}} &= \left( {\frac{6}{2}} \right)\sqrt[3]{{\frac{{48}}{3}}} \\
&= 3\sqrt[3]{{16}} \\
\end{align}\]
\frac{{6\sqrt[3]{{48}}}}{{2\sqrt[3]{3}}} &= \left( {\frac{6}{2}} \right)\sqrt[3]{{\frac{{48}}{3}}} \\
&= 3\sqrt[3]{{16}} \\
\end{align}\]
Step 2: Check to see if the radical can be further simplified.
\[\begin{align}
3\sqrt[3]{{16}} &= 3\sqrt[3]{{2^4 }} \\
&= 3\sqrt[3]{{2^3 \cdot 2^1 }} \\
&= \left( {3\cdot 2} \right)\sqrt[3]{2} \\
&= 6\sqrt[3]{2} \\
\end{align}\]
3\sqrt[3]{{16}} &= 3\sqrt[3]{{2^4 }} \\
&= 3\sqrt[3]{{2^3 \cdot 2^1 }} \\
&= \left( {3\cdot 2} \right)\sqrt[3]{2} \\
&= 6\sqrt[3]{2} \\
\end{align}\]
Therefore, \(\frac{{6\sqrt[3]{{48}}}}{{2\sqrt[3]{3}}} = 6\sqrt[3]{2}\).