Example  1

Simplify the expression \(3\sqrt 7 \left( {5\sqrt 2 - 2} \right)\).

Step 1: Use the distributive property to multiply the monomial by each term in the binomial.

\(\begin{align}
 3\sqrt 7 \left( {5\sqrt 2 - 2} \right) &= \left( {3\sqrt 7 \cdot 5\sqrt 2 } \right) + \left( {3\sqrt 7 \cdot \left( {-2} \right)} \right) \\ 
  &= \left[ {\left( {3 \cdot 5} \right)\sqrt {7 \cdot 2} } \right] + \left[ {\left( {3 \cdot \left( {-2} \right)} \right)\sqrt 7 } \right] \\ 
  &= 15\sqrt {14} + \left( {-6} \right)\sqrt 7  \\ 
  &= 15\sqrt {14} - 6\sqrt 7  \\ 
 \end{align}\)


Step 2: Check if any radicals can be further reduced.

Neither radical can be simplified further.

\(3\sqrt 7 \left( {5\sqrt 2 - 2} \right) = 15\sqrt {14} - 6\sqrt 7 \)