Example  4

Simplify the expression \(\left( {4\sqrt[3]{{15}} - 1} \right)\left( {\sqrt[3]{{25}} + 5} \right)\).

Step 1: Multiply the binomials using FOIL.

\(\begin{align}
 \left( {4\sqrt[3]{{15}} - 1} \right)\left( {\sqrt[3]{{25}} + 5} \right) &= \left[ {4\sqrt[3]{{15}}\cdot \sqrt[3]{{25}}} \right] + \left[ {4\sqrt[3]{{15}}\cdot 5} \right] + \left[ {\left( { - 1} \right)\cdot \sqrt[3]{{25}}} \right] + \left[ {\left( { - 1} \right) \cdot 5} \right] \\ 
  &= 4\sqrt[3]{{375}} + 20\sqrt[3]{{15}} - \sqrt[3]{{25}} - 5 \\ 
 \end{align}\)


Step 2: Check if any radicals can be further reduced.

\(\begin{align}
 4\sqrt[3]{{375}} + 20\sqrt[3]{{15}} - \sqrt[3]{{25}} - 5 &= 4\sqrt[3]{{125\cdot 3}} + 20\sqrt[3]{{15}} - \sqrt[3]{{25}} - 5 \\ 
  &= 4\cdot 5\sqrt[3]{3} + 20\sqrt[3]{{15}} - \sqrt[3]{{25}} - 5 \\ 
  &= 20\sqrt[3]{3} + 20\sqrt[3]{{15}} - \sqrt[3]{{25}} - 5 \\ 
 \end{align}\)