Example  5

Simplify the expression \(\left( {\sqrt 3 + \sqrt r } \right)\left( {2\sqrt {5r} - \sqrt {2r} } \right)\).  Indicate the restrictions of the variable.

Step 1: Identify the restrictions on \(r\).

Because the index is \(2\) (even), all radicands must be greater than or equal to zero.

\(r \ge 0, r \in \rm R\)

Step 2: Multiply the binomials following FOIL, and then check if any radicals can be further reduced.

\(\begin{align}
 \left( {\sqrt 3 + \sqrt r } \right)\left( {2\sqrt {5r} - \sqrt {2r} } \right) &= 2\sqrt {15r} - \sqrt {6r} + 2\sqrt {5r^2 } - \sqrt {2r^2 }  \\ 
  &= 2\sqrt {15r} - \sqrt {6r} + 2r\sqrt 5 - r\sqrt 2  \\ 
 \end{align}\)